On Weyl–Titchmarsh theory for singular finite difference Hamiltonian systems
نویسندگان
چکیده
منابع مشابه
On Weyl–titchmarsh Theory for Singular Finite Difference Hamiltonian Systems
We develop the basic theory of matrix-valued Weyl–Titchmarsh M-functions and the associated Green’s matrices for whole-line and half-line self-adjoint Hamiltonian finite difference systems with separated boundary conditions.
متن کاملSingular Sturmian theory for linear Hamiltonian differential systems
We establish a Sturmian type theorem comparing the number of focal points of any conjoined basis of a nonoscillatory linear Hamiltonian differential system with the number of focal points of the principal solution. We also present various extensions of this statement.
متن کاملOn the Right Hamiltonian for Singular Perturbations: General Theory
Let a pair of self-adjoint operators fA 0;W 0g be such that (a) there is a dense domain D dom(A) \ dom(W ) that _ H = (A +W )jD is semibounded from below (stability domain), (b) the symmetric operator _ H is not essentially self-adjoint (singularity of the perturbation), (c) the Friedrichs extension  of _ A = AjD is maximal with respect to W , i.e., dom(p W )\ ker( _ A I) = f0g, < 0. Let fWng1...
متن کاملRemarks on perturbation theory for Hamiltonian systems
A comparative discussion of the normal form and action angle variable method is presented in a tutorial way. Normal forms are introduced by Lie series which avoid mixed variable canonical transformations. The main interest is focused on establishing a third integral of motion for the transformed Hamiltonian truncated at finite order of the perturbation parameter. In particular, for the case of ...
متن کاملOscillation Criteria for Hamiltonian Matrix Difference Systems
We obtain some oscillation criteria for the Hamiltonian difference system (AY{t) = B{t)Y{t+\) + C{t)Z{t), I AZ{t) = -A{t)Y{t + 1) B*{t)Z{t), where A, B, C, Y, Z are dxd matrix functions. As a corollary, we establish the validity of an earlier conjecture for a second-order matrix difference system.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2004
ISSN: 0377-0427
DOI: 10.1016/j.cam.2004.01.011