On Weyl–Titchmarsh theory for singular finite difference Hamiltonian systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Weyl–titchmarsh Theory for Singular Finite Difference Hamiltonian Systems

We develop the basic theory of matrix-valued Weyl–Titchmarsh M-functions and the associated Green’s matrices for whole-line and half-line self-adjoint Hamiltonian finite difference systems with separated boundary conditions.

متن کامل

Singular Sturmian theory for linear Hamiltonian differential systems

We establish a Sturmian type theorem comparing the number of focal points of any conjoined basis of a nonoscillatory linear Hamiltonian differential system with the number of focal points of the principal solution. We also present various extensions of this statement.

متن کامل

On the Right Hamiltonian for Singular Perturbations: General Theory

Let a pair of self-adjoint operators fA 0;W 0g be such that (a) there is a dense domain D dom(A) \ dom(W ) that _ H = (A +W )jD is semibounded from below (stability domain), (b) the symmetric operator _ H is not essentially self-adjoint (singularity of the perturbation), (c) the Friedrichs extension  of _ A = AjD is maximal with respect to W , i.e., dom(p W )\ ker( _ A I) = f0g, < 0. Let fWng1...

متن کامل

Remarks on perturbation theory for Hamiltonian systems

A comparative discussion of the normal form and action angle variable method is presented in a tutorial way. Normal forms are introduced by Lie series which avoid mixed variable canonical transformations. The main interest is focused on establishing a third integral of motion for the transformed Hamiltonian truncated at finite order of the perturbation parameter. In particular, for the case of ...

متن کامل

Oscillation Criteria for Hamiltonian Matrix Difference Systems

We obtain some oscillation criteria for the Hamiltonian difference system (AY{t) = B{t)Y{t+\) + C{t)Z{t), I AZ{t) = -A{t)Y{t + 1) B*{t)Z{t), where A, B, C, Y, Z are dxd matrix functions. As a corollary, we establish the validity of an earlier conjecture for a second-order matrix difference system.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2004

ISSN: 0377-0427

DOI: 10.1016/j.cam.2004.01.011