منابع مشابه
Counting 1-Factors in Regular Bipartite Graphs
perfect matchings. (A perfect matching or 1-factor is a set of disjoint edges covering all vertices.) This generalizes a result of Voorhoeve [11] for the case k = 3, stating that any 3-regular bipartite graph with 2n vertices has at least ( 4 3) n perfect matchings. The base in (1) is best possible for any k: let αk be the largest real number such that any k-regular bipartite graph with 2n vert...
متن کاملq - regular bipartite graphs
An explicit construction of a family of binary LDPC codes called LU(3, q), where q is a power of a prime, was recently given. A conjecture was made for the dimensions of these codes when q is odd. The conjecture is proved in this note. The proof involves the geometry of a 4-dimensional symplectic vector space and the action of the symplectic group and its subgroups.
متن کاملOn bipartite Q-polynomial distance-regular graphs
Let Γ denote a bipartite Q-polynomial distance-regular graph with vertex set X, diameter d ≥ 3 and valency k ≥ 3. Let RX denote the vector space over R consisting of column vectors with entries in R and rows indexed by X. For z ∈ X, let ẑ denote the vector in RX with a 1 in the z-coordinate, and 0 in all other coordinates. Fix x, y ∈ X such that ∂(x, y) = 2, where ∂ denotes path-length distance...
متن کاملTwo spectral characterizations of regular, bipartite graphs with five eigenvalues
Graphs with a few distinct eigenvalues usually possess an interesting combinatorial structure. We show that regular, bipartite graphs with at most six distinct eigenvalues have the property that each vertex belongs to the constant number of quadrangles. This enables to determine, from the spectrum alone, the feasible families of numbers of common neighbors for each vertex with other vertices in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1982
ISSN: 0012-365X
DOI: 10.1016/0012-365x(82)90079-6