On thec-strong chromatic number oft-intersecting hypergraphs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On The Chromatic Number of Geometric Hypergraphs

A finite family R of simple Jordan regions in the plane defines a hypergraph H = H(R) where the vertex set of H is R and the hyperedges are all subsets S ⊂ R for which there is a point p such that S = {r ∈ R|p ∈ r}. The chromatic number of H(R) is the minimum number of colors needed to color the members of R such that no hyperedge is monochromatic. In this paper we initiate the study of the chr...

متن کامل

On the Chromatic Number of Kneser Hypergraphs

We give a simple and elementary proof of Kř́ıž’s lower bound on the chromatic number of the Kneser r-hypergraph of a set system S.

متن کامل

Circular Chromatic Number of Hypergraphs

The concept of circular chromatic number of graphs was introduced by Vince(1988). In this paper we define circular chromatic number of uniform hypergraphs and study their basic properties. We study the relationship between circular chromatic number with chromatic number and fractional chromatic number of uniform hypergraphs.

متن کامل

Strong total chromatic numbers of complete hypergraphs

We determine the strong total chromatic number of the complete h-uniform hypergraph Kh, and the complete h-partite hypergraph K,

متن کامل

On intersecting hypergraphs

We investigate the following question: “Given an intersecting multi-hypergraph on n points, what fraction of edges must be covered by any of the best 2 points?” (Here “best” means that together they cover the most.) We call this M2(n). This is a special case of a question asked by Erdős and Gyárfás [1] (they considered r–wise intersecting and the best t points), and is a generalization of work ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2013

ISSN: 0012-365X

DOI: 10.1016/j.disc.2013.02.007