On the zeta function of biprojective complete intersections
نویسندگان
چکیده
منابع مشابه
Poles of Zeta Functions of Complete Intersections
A vanishing theorem is proved for`-adic cohomology with compact support on a singular aane complete intersection. As an application, it is shown that for an aane complete intersection deened over a nite eld of q elements, the reciprocal \poles" of the zeta function are always divisible by q as algebraic integers. A p-adic proof is also given, which leads to further q-divisibility of the poles o...
متن کاملOn the Zeta Function of a Projective Complete Intersection
We compute a basis for the p-adic Dwork cohomology of a smooth complete intersection in projective space over a finite field and use it to give padic estimates for the action of Frobenius on this cohomology. In particular, we prove that the Newton polygon of the characteristic polynomial of Frobenius lies on or above the associated Hodge polygon. This result was first proved by B. Mazur using c...
متن کاملOn the Regularity of Products and Intersections of Complete Intersections
This paper proves the formulae reg(IJ) ≤ reg(I) + reg(J), reg(I ∩ J) ≤ reg(I) + reg(J) for arbitrary monomial complete intersections I and J , and provides examples showing that these inequalities do not hold for general complete intersections.
متن کاملOn the Connectivity of Some Complete Intersections
We show that the complement of a degree d hypersurface in a projective complete intersection, whose defining equations have degrees strictly larger than d, has a rational connectivity higher than expected. The key new feature is that a positivity result replaces the usual transversality conditions needed to get such connectivity results.
متن کاملOn the Futaki Invariants of Complete Intersections
In 1983, Futaki [2] introduced his invariants which generalize the obstruction of Kazdan-Warner to prescribe Gauss curvature on S. The Futaki invariants are defined for any compact Kähler manifold with positive first Chern class that has nontrivial holomorphic vector fields. Their vanishing are necessary conditions to the existence of Kähler-Einstein metric on the underlying manifold. Let M be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1969
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1969-0232772-0