On the Yamabe problem on contact Riemannian manifolds
نویسندگان
چکیده
منابع مشابه
On the existence of the Yamabe problem on contact Riemannian manifolds
It was proved in [25] that for a contact Riemannian manifold with non-integrable almost complex structure, the Yamabe problem is subcritical in the sense that its Yamabe invariant is less than that of the Heisenberg group. In this paper we give a complete proof of the solvability of the contact Riemannian Yamabe problem in the subcritical case. These two results implies that the Yamabe problem ...
متن کاملPositive Mass Theorem for the Yamabe Problem on Spin Manifolds
Let (M, g) be a compact connected spin manifold of dimension n ≥ 3 whose Yamabe invariant is positive. We assume that (M, g) is locally conformally flat or that n ∈ {3, 4, 5}. According to a positive mass theorem by Schoen and Yau the constant term in the asymptotic development of the Green’s function of the conformal Laplacian is positive if (M, g) is not conformally equivalent to the sphere. ...
متن کاملSecond Yamabe constant on Riemannian products
Let (M, g) be a closed Riemannian manifold (m ≥ 2) of positive scalar curvature and (N, h) any closed manifold. We study the asymptotic behaviour of the second Yamabe constant and the second N−Yamabe constant of (M × N, g + th) as t goes to +∞. We obtain that limt→+∞ Y (M ×N, [g+ th]) = 2 2 m+n Y (M ×R, [g+ ge]). If n ≥ 2, we show the existence of nodal solutions of the Yamabe equation on (M × ...
متن کاملOn Partially Pseudo Symmetric K-contact Riemannian Manifolds
A Riemannian manifold (M, g) is semi-symmetric if (R(X,Y ) ◦ R)(U, V,W ) = 0. It is called pseudo-symmetric if R ◦ R = F, F being a given function of X, . . . ,W and g. It is called partially pseudosymmetric if this last relation is fulfilled by not all values of X, . . . ,W . Such manifolds were investigated by several mathematicians: I.Z. Szabó, S. Tanno, K. Nomizu, R. Deszcz and others. In t...
متن کاملDirichlet Duality and the Nonlinear Dirichlet Problem on Riemannian Manifolds
In this paper we study the Dirichlet problem for fully nonlinear secondorder equations on a riemannian manifold. As in our previous paper [HL4] we define equations via closed subsets of the 2-jet bundle where each equation has a natural dual equation. Basic existence and uniqueness theorems are established in a wide variety of settings. However, the emphasis is on starting with a constant coeff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Global Analysis and Geometry
سال: 2019
ISSN: 0232-704X,1572-9060
DOI: 10.1007/s10455-019-09675-8