On the translation hypersurfaces with Gauss map G satisfying ΔG=AG

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Gauss Map on a Class of Interval Translation Mappings

We study the dynamics of a class of interval translation map on three intervals. We show that in this class the typical ITM is of finite type (reduce to an interval exchange transformation) and that the complement contains a Cantor set. We relate our maps to substitution subshifts. Results on Hausdorff dimension of the attractor and on unique ergodicity are obtained.

متن کامل

The hypersurfaces with conformal normal Gauss map in H n + 1 and S n + 11 ∗ † ‡

In this paper we introduce the fourth fundamental form for the hypersurfaces in H and the space-like hypersurfaces in S 1 and discuss the conformality of the normal Gauss maps of the hypersurfaces in H and S 1 . Particularly, we discuss the surfaces with conformal normal Gauss maps in H and S 1 and prove a duality property. We give the Weierstrass representation formula for the space-like surfa...

متن کامل

Lorentz Hypersurfaces Satisfying △h⃗ = Αh⃗ with Complex Eigen Values

The study of submanifolds with harmonic mean curvature vector field was initiated by B. Y. Chen in 1985 and arose in the context of his theory of submanifolds of finite type. For a survey on submanifolds of finite type and various related topics was presented in [8, 9]. Let M r be an n-dimensional, connected submanifold of the pseudo-Euclidean space E s . Denote by x⃗, H⃗, and △ respectively the ...

متن کامل

On the Gauss Map with Vanishing Biharmonic Stress-energy Tensor

We study the biharmonic stress-energy tensor S2 of Gauss map. Adding few assumptions, the Gauss map with vanishing S2 would be harmonic.

متن کامل

Motion of Hypersurfaces by Gauss Curvature

We consider n-dimensional convex Euclidean hypersurfaces moving with normal velocity proportional to a positive power α of the Gauss curvature. We prove that hypersurfaces contract to points in finite time, and for α ∈ (1/(n + 2], 1/n] we also prove that in the limit the solutions evolve purely by homothetic contraction to the final point. We prove existence and uniqueness of solutions for non-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Miskolc Mathematical Notes

سال: 2019

ISSN: 1787-2405,1787-2413

DOI: 10.18514/mmn.2019.3021