On the Total Variation of High-Order Semi-Discrete Central Schemes for Conservation Laws
نویسندگان
چکیده
منابع مشابه
The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملOn the Total Variation of High-Order Semi-Discrete Central Schemes for Conservation Laws
We discuss a new fifth-order, semi-discrete, central-upwind scheme for solving one-dimensional systems of conservation laws. This scheme combines a fifthorder WENO reconstruction, a semi-discrete central-upwind numerical flux, and a strong stability preserving Runge–Kutta method. We test our method with various examples, and give particular attention to the evolution of the total variation of t...
متن کاملHigh-Order Central Schemes for Hyperbolic Systems of Conservation Laws
A family of shock capturing schemes for the approximate solution of hyperbolic systems of conservation laws is presented. The schemes are based on a modified ENO reconstruction of pointwise values from cell averages and on approximate computation of the flux on cell boundaries. The use of a staggered grid avoids the need of a Riemann solver. The integral of the fluxes is computed by Simpson’s r...
متن کاملHigh-order central-upwind schemes for hyperbolic conservation laws
We study central-upwind schemes for systems of hyperbolic conservation laws, recently introduced in [A. Kurganov, S. Noelle and G. Petrova, SIAM J. Sci. Comput., 23 (2001), pp. 707–740]. Similarly to the staggered central schemes, these schemes are central Godunov-type projection-evolution methods that enjoy the advantages of high resolution, simplicity, universality, and robustness. At the sam...
متن کاملA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Scientific Computing
سال: 2006
ISSN: 0885-7474,1573-7691
DOI: 10.1007/s10915-005-9046-8