On the total irregularity strength of convex polytope graphs
نویسندگان
چکیده
A vertex (edge) irregular total k-labeling ? of a graph G is labeling the vertices and edges with labels from set {1,2,...,k} in such way that any two different (edges) have distinct weights. Here, weight x sum label all incident x, whereas an edge to edge. The minimum k for which has called irregularity strength G. In this paper, we are dealing infinite classes convex polytopes generated by prism antiprism graph. We determined exact value their strength.
منابع مشابه
Total Vertex Irregularity Strength of Convex Polytope Graphs
A total vertex irregular k-labeling φ of a graph G is a labeling of the vertices and edges of G with labels from the set {1, 2, . . . , k} in such a way that for any two different vertices x and y their weights wt(x) and wt(y) are distinct. Here, the weight of a vertex x in G is the sum of the label of x and the labels of all edges incident with the vertex x. The minimum k for which the graph G...
متن کاملOn total vertex irregularity strength of graphs
Martin Bača et al. [2] introduced the problem of determining the total vertex irregularity strengths of graphs. In this paper we discuss how the addition of new edge affect the total vertex irregularity strength.
متن کاملTotal vertex irregularity strength of corona product of some graphs
A vertex irregular total k-labeling of a graph G with vertex set V and edge set E is an assignment of positive integer labels {1, 2, ..., k} to both vertices and edges so that the weights calculated at vertices are distinct. The total vertex irregularity strength of G, denoted by tvs(G)is the minimum value of the largest label k over all such irregular assignment. In this paper, we study the to...
متن کاملOn Total Edge Irregularity Strength of Staircase Graphs and Related Graphs
Let G=(V(G),E(G)) be a connected simple undirected graph with non empty vertex set V(G) and edge set E(G). For a positive integer k, by an edge irregular total k-labeling we mean a function f : V(G)UE(G) --> {1,2,...,k} such that for each two edges ab and cd, it follows that f(a)+f(ab)+f(b) is different from f(c)+f(cd)+f(d), i.e. every two edges have distinct weights. The minimum k for which G ...
متن کاملThe irregularity and total irregularity of Eulerian graphs
For a graph G, the irregularity and total irregularity of G are defined as irr(G)=∑_(uv∈E(G))〖|d_G (u)-d_G (v)|〗 and irr_t (G)=1/2 ∑_(u,v∈V(G))〖|d_G (u)-d_G (v)|〗, respectively, where d_G (u) is the degree of vertex u. In this paper, we characterize all connected Eulerian graphs with the second minimum irregularity, the second and third minimum total irregularity value, respectively.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proyecciones
سال: 2021
ISSN: ['0716-0917', '0717-6279']
DOI: https://doi.org/10.22199/issn.0717-6279-3959