ON THE SYNCHRONİZATION OF VAN der POL-DUFFING OSCILLATOR
نویسندگان
چکیده
منابع مشابه
First Integrals for the Duffing-van Der Pol Type Oscillator
In this article, under certain parametric conditions, we study the first integrals of the Duffing-van der Pol-type oscillator equations which include the van der Pol and the Duffing oscillator systems, as particular cases. After making a series of variable transformations and applying the PrellerSinger method, we find the first integrals of the simplified equations without complicated calculati...
متن کاملMultistability and Rare attractors in van der Pol-Duffing oscillator
Nonlinear systems exhibit a rich variety of different long-term behaviors such as: fixed points, limit cycles, quasiperiodic and chaotic behavior. In a complex system several attractors may coexist for a given set of system parameters. This coexistence is termed multistability and has been found in almost all research areas of natural science, such as: mechanics, electronics, biology, environme...
متن کاملThe Duffing–Van der Pol Equation: Metamorphoses of Resonance Curves
We study dynamics of the Duffing–Van der Pol driven oscillator. Periodic steady-state solutions of the corresponding equation are determined within the Krylov-Bogoliubov-Mitropolsky approach to yield dependence of amplitude on forcing frequency as an implicit function, referred to as resonance curve or amplitude profile. Equations for singular points of resonance curves are solved exactly. We i...
متن کاملLyapunov Exponents and Stability for the Stochastic Duffing-van Der Pol Oscillator
Let λ denote the almost sure Lyapunov exponent obtained by linearizing the stochastic Duffing-van der Pol oscillator ẍ = −ωx + βẋ−Ax −Bxẋ + σxẆt at the origin x = ẋ = 0 in phase space. If λ > 0 then the process {(xt, ẋt) : t ≥ 0} is positive recurrent on R \ {(0, 0)} with stationary probability measure μ, say. For λ > 0 let λ̃ denote the almost sure Lyapunov exponent obtained by linearizing the ...
متن کاملBifurcation and chaos in the double well Duffing - van der Pol oscillator : Numerical and analytical studies
The behaviour of a driven double well Duffing-van der Pol (DVP) oscillator for a specific parametric choice (| α |= β) is studied. The existence of different attractors in the system parameters (f − ω) domain is examined and a detailed account of various steady states for fixed damping is presented. Transition from quasiperiodic to periodic motion through chaotic oscillations is reported. The i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cumhuriyet Science Journal
سال: 2019
ISSN: 2587-2680
DOI: 10.17776/csj.445260