On the summability of Lagrange interpolation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Multivariate Lagrange Interpolation

Lagrange interpolation by polynomials in several variables is studied through a finite difference approach. We establish an interpolation formula analogous to that of Newton and a remainder formula, both of them in terms of finite differences. We prove that the finite difference admits an integral representation involving simplex spline functions. In particular, this provides a remainder formul...

متن کامل

On Boundedness of Lagrange Interpolation

We estimate the distribution function of a Lagrange interpolation polynomial and deduce mean boundedness in Lp; p < 1: 1 The Result There is a vast literature on mean convergence of Lagrange interpolation, see [4{ 8] for recent references. In this note, we use distribution functions to investigate mean convergence. We believe the simplicity of the approach merits attention. Recall that if g : R...

متن کامل

Extended Lagrange interpolation on the real line

Let {pm(wα)}m be the sequence of the polynomials orthonormal w.r.t. the Sonin-Markov weight wα(x) = e−x 2 |x|. The authors study extended Lagrange interpolation processes essentially based on the zeros of pm(wα)pm+1(wα), determining the conditions under which the Lebesgue constants, in some weighted uniform spaces, are optimal.

متن کامل

Parallel Lagrange Interpolation on the Star Graph

This paper introduces a parallel algorithm for computing an N=n!-point Lagrange interpolation on an n-star (n>2). It exploits several communication techniques on stars in a novel way which can be adapted for computing similar functions. The algorithm is optimal and consists of three phases: initialization, main and final. While there is no computation in the initialization phase, the main phase...

متن کامل

On quadrature convergence of extended Lagrange interpolation

Quadrature convergence of the extended Lagrange interpolant L2n+1f for any continuous function f is studied, where the interpolation nodes are the n zeros τi of an orthogonal polynomial of degree n and the n+ 1 zeros τ̂j of the corresponding “induced” orthogonal polynomial of degree n + 1. It is found that, unlike convergence in the mean, quadrature convergence does hold for all four Chebyshev w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1973

ISSN: 0021-9045

DOI: 10.1016/0021-9045(73)90080-4