On the structure of quantum permutation groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Structure of Quantum Permutation Groups

The quantum permutation group of the set Xn = {1, . . . , n} corresponds to the Hopf algebra Aaut(Xn). This is an algebra constructed with generators and relations, known to be isomorphic to C(Sn) for n ≤ 3, and to be infinite dimensional for n ≥ 4. In this paper we find an explicit representation of the algebra Aaut(Xn), related to Clifford algebras. For n = 4 the representation is faithful in...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

the effects of changing roughness on the flow structure in the bends

flow in natural river bends is a complex and turbulent phenomenon which affects the scour and sedimentations and causes an irregular bed topography on the bed. for the reason, the flow hydralics and the parameters which affect the flow to be studied and understand. in this study the effect of bed and wall roughness using the software fluent discussed in a sharp 90-degree flume bend with 40.3cm ...

Algebraic Quantum Permutation Groups

We discuss some algebraic aspects of quantum permutation groups, working over arbitrary fields. If K is any characteristic zero field, we show that there exists a universal cosemisimple Hopf algebra coacting on the diagonal algebra K: this is a refinement of Wang’s universality theorem for the (compact) quantum permutation group. We also prove a structural result for Hopf algebras having a non-...

متن کامل

Integration over Quantum Permutation Groups

A remarkable fact, discovered by Wang in [14], is that the set Xn = {1, . . . , n} has a quantum permutation group. For n = 1, 2, 3 this is the usual symmetric group Sn. However, starting from n = 4 the situation is different: for instance the dual of Z2 ∗ Z2 acts on X4. In other words, “quantum permutations” do exist. They form a compact quantum group Qn, satisfying the axioms of Woronowicz in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2006

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-06-08464-4