On the spectral stability of periodic traveling waves for the critical Korteweg-de Vries and Gardner equations
نویسندگان
چکیده
In this paper, we determine spectral stability results of periodic waves for the critical Korteweg-de Vries and Gardner equations. For first equation, show that both positive zero mean traveling wave solutions possess a threshold value which may provides us rupture in stability. Concerning second establish existence using Galilean transformation on cnoidal solution modified equation equations, values are same. The main advantage presented our paper concerns solving some auxiliary initial problems to obtain
منابع مشابه
Spectral stability of periodic wave trains of the Korteweg-de Vries/Kuramoto-Sivashinsky equation in the Korteweg-de Vries limit
We study the spectral stability of a family of periodic wave trains of the Korteweg-de Vries/Kuramoto-Sivashinsky equation ∂tv + v∂xv + ∂ 3 x v + δ ( ∂ x v + ∂ x v ) = 0, δ > 0, in the Korteweg-de Vries limit δ → 0, a canonical limit describing small-amplitude weakly unstable thin film flow. More precisely, we carry out a rigorous singular perturbation analysis reducing the problem of spectral ...
متن کاملNonlinear Stability of Periodic Traveling Wave Solutions of the Generalized Korteweg-de Vries Equation
In this paper, we study the orbital stability for a four-parameter family of periodic stationary traveling wave solutions to the generalized Korteweg-de Vries (gKdV) equation ut = uxxx + f(u)x. In particular, we derive sufficient conditions for such a solution to be orbitally stable in terms of the Hessian of the classical action of the corresponding traveling wave ordinary differential equatio...
متن کاملOn the orbital (in)stability of spatially periodic stationary solutions of generalized Korteweg-de Vries equations
In this paper we generalize previous work on the stability of waves for infinite-dimensional Hamiltonian systems to include those cases for which the skew-symmetric operator J is singular. We assume that J restricted to the orthogonal complement of its kernel has a bounded inverse. With this assumption and some further genericity conditions we show that the linear stability of the wave implies ...
متن کاملOn the spectral and orbital stability of spatially periodic stationary solutions of generalized Korteweg-de Vries equations
In this paper we generalize previous work on the spectral and orbital stability of waves for infinite-dimensional Hamiltonian systems to include those cases for which the skewsymmetric operator J is singular. We assume that J restricted to the orthogonal complement of its kernel has a bounded inverse. With this assumption and some further genericity conditions we (a) derive an unstable eigenval...
متن کاملNumerical inverse scattering for the Korteweg–de Vries and modified Korteweg–de Vries equations
Recent advances in the numerical solution of Riemann–Hilbert problems allow for the implementation of a Cauchy initial value problem solver for the Korteweg–de Vries equation (KdV) and the defocusing modified Korteweg–de Vries equation (mKdV), without any boundary approximation. Borrowing ideas from the method of nonlinear steepest descent, this method is demonstrated to be asymptotically accur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Partial Differential Equations And Applications
سال: 2021
ISSN: ['2662-2971', '2662-2963']
DOI: https://doi.org/10.1007/s42985-021-00095-7