On the spectral stability of periodic traveling waves for the critical Korteweg-de Vries and Gardner equations

نویسندگان

چکیده

In this paper, we determine spectral stability results of periodic waves for the critical Korteweg-de Vries and Gardner equations. For first equation, show that both positive zero mean traveling wave solutions possess a threshold value which may provides us rupture in stability. Concerning second establish existence using Galilean transformation on cnoidal solution modified equation equations, values are same. The main advantage presented our paper concerns solving some auxiliary initial problems to obtain

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral stability of periodic wave trains of the Korteweg-de Vries/Kuramoto-Sivashinsky equation in the Korteweg-de Vries limit

We study the spectral stability of a family of periodic wave trains of the Korteweg-de Vries/Kuramoto-Sivashinsky equation ∂tv + v∂xv + ∂ 3 x v + δ ( ∂ x v + ∂ x v ) = 0, δ > 0, in the Korteweg-de Vries limit δ → 0, a canonical limit describing small-amplitude weakly unstable thin film flow. More precisely, we carry out a rigorous singular perturbation analysis reducing the problem of spectral ...

متن کامل

Nonlinear Stability of Periodic Traveling Wave Solutions of the Generalized Korteweg-de Vries Equation

In this paper, we study the orbital stability for a four-parameter family of periodic stationary traveling wave solutions to the generalized Korteweg-de Vries (gKdV) equation ut = uxxx + f(u)x. In particular, we derive sufficient conditions for such a solution to be orbitally stable in terms of the Hessian of the classical action of the corresponding traveling wave ordinary differential equatio...

متن کامل

On the orbital (in)stability of spatially periodic stationary solutions of generalized Korteweg-de Vries equations

In this paper we generalize previous work on the stability of waves for infinite-dimensional Hamiltonian systems to include those cases for which the skew-symmetric operator J is singular. We assume that J restricted to the orthogonal complement of its kernel has a bounded inverse. With this assumption and some further genericity conditions we show that the linear stability of the wave implies ...

متن کامل

On the spectral and orbital stability of spatially periodic stationary solutions of generalized Korteweg-de Vries equations

In this paper we generalize previous work on the spectral and orbital stability of waves for infinite-dimensional Hamiltonian systems to include those cases for which the skewsymmetric operator J is singular. We assume that J restricted to the orthogonal complement of its kernel has a bounded inverse. With this assumption and some further genericity conditions we (a) derive an unstable eigenval...

متن کامل

Numerical inverse scattering for the Korteweg–de Vries and modified Korteweg–de Vries equations

Recent advances in the numerical solution of Riemann–Hilbert problems allow for the implementation of a Cauchy initial value problem solver for the Korteweg–de Vries equation (KdV) and the defocusing modified Korteweg–de Vries equation (mKdV), without any boundary approximation. Borrowing ideas from the method of nonlinear steepest descent, this method is demonstrated to be asymptotically accur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Partial Differential Equations And Applications

سال: 2021

ISSN: ['2662-2971', '2662-2963']

DOI: https://doi.org/10.1007/s42985-021-00095-7