On the Spectral Radius of Minimally 2-(Edge)-Connected Graphs with Given Size

نویسندگان

چکیده

A graph is minimally $k$-connected ($k$-edge-connected) if it and deleting any arbitrary chosen edge always leaves a which not ($k$-edge-connected). Let $m= \binom{d}{2}+t$, $1\leq t\leq d$ $G_m$ be the obtained from complete $K_d$ by adding one new vertex of degree $t$. $H_m$ $K_d\backslash\{e\}$ adjacent to precisely two vertices $d-1$ in $K_d\backslash\{e\}$. Rowlinson [Linear Algebra Appl., 110 (1988) 43--53.] showed that attains maximum spectral radius among all graphs size $m$. This classic result indicates $2$-(edge)-connected $m=\binom{d}{2}+t$ except $t=1$. The next year, [Europ. J. Combin., 10 (1989) 489--497] proved $2$-connected $m=\binom{d}{2}+1$ ($d\geq 5$), this also unique extremal 5$). Observe neither nor are graphs. In paper, we determine for ($2$-edge-connected) given size; moreover, corresponding characterized.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On spectral radius of strongly connected digraphs

 It is known that the directed cycle of order $n$ uniquely achieves the minimum spectral radius among all strongly connected digraphs of order $nge 3$. In this paper, among others, we determine the digraphs which achieve the second, the third and the fourth minimum spectral radii respectively among strongly connected digraphs of order $nge 4$.  

متن کامل

On the spectral radius of bipartite graphs with given diameter

Article history: Received 17 March 2008 Accepted 9 October 2008 Available online 3 December 2008 Submitted by R.A. Brualdi AMS classification: 05C50

متن کامل

Minimally k-Edge-Connected Directed Graphs of Maximal Size

Let D = (V,E) be a minimally k-edge-connected simple directed graph. We prove that there is a function f(k) such that |V | ≥ f(k) implies |E| ≤ 2k(|V | − k). We also determine the extremal graphs whose size attains this upper bound.

متن کامل

The minimal spectral radius of graphs with a given diameter

The spectral radius of a graph (i.e., the largest eigenvalue of its corresponding adjacency matrix) plays an important role in modeling virus propagation in networks. In fact, the smaller the spectral radius, the larger the robustness of a network against the spread of viruses. Among all connected graphs on n nodes the pathPn has minimal spectral radius. However, its diameter D, i.e., the maxim...

متن کامل

The Laplacian spectral radius of graphs with given matching number

In this paper, we show that of all graphs of order n with matching number β, the graphs with maximal spectral radius are Kn if n = 2β or 2β + 1; K2β+1 ∪Kn−2β−1 if 2β + 2 n < 3β + 2; Kβ ∨ Kn−β or K2β+1 ∪Kn−2β−1 if n = 3β + 2; Kβ ∨ Kn−β if n > 3β + 2, where Kt is the empty graph on t vertices. © 2006 Elsevier Inc. All rights reserved. AMS classification: 05C35; 05C50

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Combinatorics

سال: 2023

ISSN: ['1077-8926', '1097-1440']

DOI: https://doi.org/10.37236/11219