On the Signed Domination Number of the Cartesian Product of Two Directed Cycles

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Signed Domination Number of the Cartesian Product of Two Directed Cycles

Let D be a finite simple directed graph with vertex set V(D) and arc set A(D). A function ( ) { } − : 1,1 f V D → is called a signed dominating function (SDF) if [ ] ( ) 1 D f N v − ≥ for each vertex v V ∈ . The weight ( ) f ω of f is defined by ( ) ∑ v V f v ∈ . The signed domination number of a digraph D is ( ) ( ) { } γ ω = min is an SDF of s D f f D . Let Cm × Cn denotes the cartesian produ...

متن کامل

The domination number of Cartesian product of two directed paths

4 Let γ(Pm2Pn) be the domination number of the Cartesian product of directed paths Pm and Pn for m,n ≥ 2. In [13] Liu and al. determined the value of γ(Pm2Pn) 6 for arbitrary n and m ≤ 6. In this work we give the exact value of γ(Pm2Pn) for any m,n and exhibit minimum dominating sets. 8 AMS Classification[2010]:05C69,05C38. 10

متن کامل

On the outer independent 2-rainbow domination number of Cartesian products of paths and cycles

‎Let G be a graph‎. ‎A 2-rainbow dominating function (or‎ 2-RDF) of G is a function f from V(G)‎ ‎to the set of all subsets of the set {1,2}‎ ‎such that for a vertex v ∈ V (G) with f(v) = ∅, ‎the‎‎condition $bigcup_{uin N_{G}(v)}f(u)={1,2}$ is fulfilled‎, wher NG(v)  is the open neighborhood‎‎of v‎. ‎The weight of 2-RDF f of G is the value‎‎$omega (f):=sum _{vin V(G)}|f(v)|$‎. ‎The 2-rainbow‎‎d...

متن کامل

Hyperhamiltonicity Of The Cartesian Product Of Two Directed Cycles

Let Za × Zb be the product of two directed cycles, let Zc be a subgroup of Za, and let Zd be a subgroup of Zb. Also, let A = a c and B =

متن کامل

On the Domination of Cartesian Product of Directed Cycles: Results for Certain Equivalence Classes of Lengths

Let γ( −→ Cm2 −→ Cn) be the domination number of the Cartesian product of directed cycles −→ Cm and −→ Cn for m,n ≥ 2. Shaheen [13] and Liu et al. ([11], [12]) determined the value of γ( −→ Cm2 −→ Cn) when m ≤ 6 and [12] when both m and n ≡ 0(mod 3). In this article we give, in general, the value of γ(−→ Cm2 −→ Cn) when m ≡ 2(mod 3) and improve the known lower bounds for most of the remaining c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Journal of Discrete Mathematics

سال: 2015

ISSN: 2161-7635,2161-7643

DOI: 10.4236/ojdm.2015.53005