On the regularity of arithmetic multiplicative functions, I
نویسندگان
چکیده
منابع مشابه
Arithmetical Functions I: Multiplicative Functions
Truth be told, this definition is a bit embarrassing. It would mean that taking any function from calculus whose domain contains [1,+∞) and restricting it to positive integer values, we get an arithmetical function. For instance, e −3x cos2 x+(17 log(x+1)) is an arithmetical function according to this definition, although it is, at best, dubious whether this function holds any significance in n...
متن کاملAlternating Sums Concerning Multiplicative Arithmetic Functions
We deduce asymptotic formulas for the alternating sums ∑ n≤x(−1)f(n) and ∑ n≤x(−1) 1 f(n) , where f is one of the following classical multiplicative arithmetic functions: Euler’s totient function, the Dedekind function, the sum-of-divisors function, the divisor function, the gcd-sum function. We also consider analogs of these functions, which are associated to unitary and exponential divisors, ...
متن کاملMean-value Theorems for Multiplicative Arithmetic Functions of Several Variables
Let f : Nn → C be an arithmetic function of n variables, where n ≥ 2. We study the mean-value M(f) of f that is defined to be lim x1,...,xn→∞ 1 x1 · · ·xn ∑ m1≤x1, ... , mn≤xn f(m1, . . . , mn), if this limit exists. We first generalize the Wintner theorem and then consider the multiplicative case by expressing the mean-value as an infinite product over all prime numbers. In addition, we study ...
متن کاملA Representation of Multiplicative Arithmetic Functions by Symmetric Polynomials
We give a representation of the classical theory of multiplicative arithmetic functions (MF)in the ring of symmetric polynomials. The basis of the ring of symmetric polynomials that we use is the isobaric basis, a basis especially sensitive to the combinatorics of partitions of the integers. The representing elements are recursive sequences of Schur polynomials evaluated at subrings of the comp...
متن کاملMultiplicative Renormalization and Generating Functions I
Let μ be a probability measure on the real line with finite moments of all orders. Apply the Gram-Schmidt orthogonalization process to the system {1, x, x, . . . , xn, . . . } to get orthogonal polynomials Pn(x), n ≥ 0, which have leading coefficient 1 and satisfy (x − αn)Pn(x) = Pn+1(x) + ωnPn−1(x). In general it is almost impossible to use this process to compute the explicit form of these po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1980
ISSN: 0386-2194
DOI: 10.3792/pjaa.56.438