On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$

نویسندگان

چکیده

In this paper, we are going to analyze the following difference equation $$x_{n+1}=\frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}} \quad n=0,1,2,...$$ where $x_{-29}, x_{-28}, x_{-27}, ..., x_{-2}, x_{-1}, x_{0} \in \left(0,\infty\right)$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Recursive Sequence

For all values of the parameter γ, (1.1) has a unique positive equilibrium x̄ = (γ + 1)/2. When 0 < γ < 1, the positive equilibrium x̄ is locally asymptotically stable. In the case where γ = 1, the characteristic equation of the linearized equation about the positive equilibrium x̄ = 1 has three eigenvalues, one of which is −1, and the other two are 0 and 1/2. In addition, when γ = 1, (1.1) posses...

متن کامل

On the Recursive Sequence

The paper considers the boundedness character of positive solutions of the difference equation xn+1 = A+ x n /x n−1, n ∈ N0, where A, p, and r are positive real numbers. It is shown that (a) If p2 ≥ 4r > 4, or p ≥ 1 + r, r ≤ 1, then this equation has positive unbounded solutions; (b) if p2 < 4r, or 2 √ r ≤ p < 1+ r, r ∈ (0,1), then all positive solutions of the equation are bounded. Also, an an...

متن کامل

on the global asymptotic stability for a rational recursive sequence

the main objective of this paper is to study the boundedness character, the periodicity character, the convergenceand the global stability of the positive solutions of the nonlinear rational difference equation/ , n 0,1,2,....0 01      kii n ikin i n i x  x b  xwhere the coefficients i i b , ,  together with the initial conditions ,.... , , 1 0 x x x k  are arbitrary...

متن کامل

On the Rational Recursive Sequence

Our main objective is to study some qualitative behavior of the solutions of the difference equation xn+1 = γxn−k + (axn + bxn−k) / (cxn − dxn−k) , n = 0, 1, 2, ..., where the initial conditions x−k,..., x−1, x0 are arbitrary positive real numbers and the coefficients γ, a, b, c and d are positive constants, while k is a positive integer number.

متن کامل

On the recursive sequence xn+1=

We give a complete picture regarding the behavior of positive solutions of the following important difference equation: xn = 1+ ∑ k i=1αixn−pi / ∑m j=1βjxn−qj , n∈N0, where αi, i∈ {1, . . . ,k}, and βj , j ∈ {1, . . . ,m}, are positive numbers such that ∑ k i=1αi = ∑m j=1βj = 1, and pi, i ∈ {1, . . . ,k}, and qj , j ∈ {1, . . . ,m}, are natural numbers such that p1 < p2 < ··· < pk and q1 < q2 <...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in advanced mathematical sciences

سال: 2021

ISSN: ['2651-4001']

DOI: https://doi.org/10.33434/cams.814296