On the quadratic Lagrange spectrum

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the quadratic Lagrange spectrum

We study the quadratic Lagrange spectrum defined by Parkkonen and Paulin by considering the approximation by elements of the orbit of a given real quadratic irrational number for the action by homographies and anti-homographies of PSL2(Z) on R ∪ {∞}. Our approach is based on the theory of continued fractions.

متن کامل

On geometric Lagrange interpolation by quadratic parametric patches

In the paper, the geometric Lagrange interpolation by quadratic parametric patches is considered. The freedom of parameterization is used to raise the number of interpolated points from the usual 6 up to 10, i.e., the number of points commonly interpolated by a cubic patch. At least asymptotically, the existence of a quadratic geometric interpolant is confirmed for data taken on a parametric su...

متن کامل

Lagrange, central norms, and quadratic Diophantine equations

As is often the case, some results get rediscovered over time. In particular, some rather striking results of Lagrange are often recreated. For instance, in [6], a result pertaining to the Pell equation for a prime discriminant was recast in the light of nonabelian cohomology groups. Yet, in [1], the authors acknowledged the fact that the result “has been discovered before,” and provided an ele...

متن کامل

Dynamical generalizations of the Lagrange spectrum

We compute two invariants of topological conjugacy, the upper and lower limits of the inverse of Boshernitzan's ne n , where e n is the smallest measure of a cylinder of length n, for three families of symbolic systems, the natural codings of rotations and three-interval exchanges and the Arnoux-Rauzy systems. The sets of values of these invariants for a given family of systems generalize the L...

متن کامل

Markoff-lagrange Spectrum and Extremal Numbers

Let γ = (1+ √ 5)/2 denote the golden ratio. H. Davenport and W. M. Schmidt showed in 1969 that, for each non-quadratic irrational real number ξ, there exists a constant c > 0 with the property that, for arbitrarily large values of X , the inequalities |x0| ≤ X, |x0ξ − x1| ≤ cX , |x0ξ − x2| ≤ cX admit no non-zero solution (x0, x1, x2) ∈ Z. Their result is best possible in the sense that, convers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2013

ISSN: 0025-5874,1432-1823

DOI: 10.1007/s00209-013-1230-1