On the Prequantisation Map for 2-Plectic Manifolds

نویسندگان

چکیده

For a manifold $M$ with an integral closed 3-form $\omega$, we construct $PU(H)$-bundle and Lie groupoid over its total space, together curving in the sense of gerbes. If form is non-degenerate, furthermore give natural 2-algebra quasi-isomorphism from observables $(M,\omega)$ to weak symmetries above geometric structure, generalising prequantisation map Kostant Souriau.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Moment Map on Symplectic Manifolds

We consider a connected symplectic manifold M acted on by a connected Lie group G in a Hamiltonian fashion. If G is compact, we prove give an Equivalence Theorem for the symplectic manifolds whose squared moment map ‖ μ ‖ is constant. This result works also in the almost-Kähler setting. Then we study the case when G is a non compact Lie group acting properly on M and we prove a splitting result...

متن کامل

on 1-manifolds and 2-manifolds

in this work, different types of chaotic 1-manifolds which lie on the chaotic spheres or on a torus are introduced. some types of retractions of the chaotic spheres affect on the 1-chaotic systems, and other types of retractions occur to the geometric manifold but make the 1-chaotic manifold invariant. the existed retractions are discussed through new proved theorems. also we construct diffe...

متن کامل

On the Hochschild–kostant–rosenberg Map for Graded Manifolds

We show that the Hochschild–Kostant–Rosenberg map from the space of multivector fields on a graded manifold N (endowed with a Berezinian volume) to the cohomology of the algebra of multidifferential operators on N (as a subalgebra of the Hochschild complex of C∞(N)) is an isomorphism of Batalin–Vilkovisky algebras. These results generalize to differential graded manifolds.

متن کامل

A Note on the Moment Map on Compact Kähler Manifolds

We consider compact Kähler manifolds acted on by a connected compact Lie group K of isometries in a Hamiltonian fashion. We prove that the squared moment map ||μ|| is constant if and only if the manifold is biholomorphically and K-equivariantly isometric to a product of a flag manifold and a compact Kähler manifold which is acted on trivially by K. The authors do not know whether the compactnes...

متن کامل

A Note on the Moment Map on Symplectic Manifolds

We consider a connected symplectic manifold M acted on by a connected Lie group G in a Hamiltonian fashion. If G is compact we study the smooth function f =‖ μ ‖. We prove that if a point x ∈ M realizes a local maximum of the squared moment map ‖ μ ‖ then the orbit Gx is symplectic and Gμ(μ(x)) is G-equivariantly symplectomorphic to a product of a flag manifold and a symplectic manifold which i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Physics Analysis and Geometry

سال: 2021

ISSN: ['1572-9656', '1385-0172']

DOI: https://doi.org/10.1007/s11040-021-09391-5