On the permanental nullity and matching number of graphs
نویسندگان
چکیده
منابع مشابه
The Nullity of Bicyclic Graphs in Terms of Their Matching Number
Let G be a graph with n(G) vertices and m(G) be its matching number. The nullity of G, denoted by η(G), is the multiplicity of the eigenvalue zero of adjacency matrix of G. It is well known that if G is a tree, then η(G) = n(G)− 2m(G). Guo et al. [Jiming GUO, Weigen YAN, Yeongnan YEH. On the nullity and the matching number of unicyclic graphs. Linear Alg. Appl., 2009, 431: 1293–1301] proved tha...
متن کاملOn the nullity of graphs
The nullity of a graph G, denoted by η(G), is the multiplicity of the eigenvalue zero in its spectrum. It is known that η(G) ≤ n − 2 if G is a simple graph on n vertices and G is not isomorphic to nK1. In this paper, we characterize the extremal graphs attaining the upper bound n− 2 and the second upper bound n− 3. The maximum nullity of simple graphs with n vertices and e edges, M(n, e), is al...
متن کاملthe effect of translation versus matching words and definitions on retrieval of vocabulary among iranian intermediate efl learners
این تحقیق جهت بررسی تأثیر ترجمه در برابر ایجاد ارتباط بین لغات و ارائه معانی بر بازیابی واژگان در میان زبان آموزان متوسط ایرانی انجام شده است. به این منظور سه گروه کامل از دانش آموزان سطح متوسط که کتاب اینترچنج3 را مطالعه می کردند پس از انجام تست استاندارد مهارت سنجی انتخاب شدند. در ابتدا محقق آنها را به دو گروه آزمایشی و یک گروه کنترل یا شاهد تقسیم نمود و درمرحله بعد از کلیه دانش آموزان در سه ...
The augmented Zagreb index, vertex connectivity and matching number of graphs
Let $Gamma_{n,kappa}$ be the class of all graphs with $ngeq3$ vertices and $kappageq2$ vertex connectivity. Denote by $Upsilon_{n,beta}$ the family of all connected graphs with $ngeq4$ vertices and matching number $beta$ where $2leqbetaleqlfloorfrac{n}{2}rfloor$. In the classes of graphs $Gamma_{n,kappa}$ and $Upsilon_{n,beta}$, the elements having maximum augmented Zagreb index are determined.
متن کاملOn the permanental polynomials of some graphs∗
Let G be a simple graph with adjacency matrix A(G) and π(G,x) the permanental polynomial of G. Let G × H denotes the Cartesian product of graphs G and H. Inspired by Klein’s idea to compute the permanent of some matrices (Mol. Phy., 1976, Vol. 31, (3): 811−823), in this paper in terms of some orientation of graphs we study the permanental polynomial of a type of graphs. Here are some of our mai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear and Multilinear Algebra
سال: 2017
ISSN: 0308-1087,1563-5139
DOI: 10.1080/03081087.2017.1302403