On the packing chromatic number of hypercubes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the packing chromatic number of hypercubes

The packing chromatic number χρ(G) of a graph G is the smallest integer k needed to proper color the vertices of G in such a way that the distance in G between any two vertices having color i be at least i+1. Goddard et al. [8] found an upper bound for the packing chromatic number of hypercubes Qn. Moreover, they compute χρ(Qn) for n ≤ 5 leaving as an open problem the remaining cases. In this p...

متن کامل

The packing chromatic number of hypercubes

The packing chromatic number χρ(G) of a graph G is the smallest integer k needed to proper color the vertices of G in such a way that the distance in G between any two vertices having color i be at least i + 1. Goddard et al. [9] found an upper bound for the packing chromatic number of hypercubes Qn. Moreover, they compute χρ(Qn) for n ≤ 5 leaving as an open problem the remaining cases. In this...

متن کامل

Packing Chromatic Number of Enhanced Hypercubes

The packing chromatic number χρ(G) of a graph G is the smallest integer k for which there exists a mapping π : V (G) −→ {1, 2, ..., k} such that any two vertices of color i are at distance at least i+ 1. In this paper, we compute the packing chromatic number for enhanced hypercubes.

متن کامل

Packing chromatic number versus chromatic and clique number

The packing chromatic number χρ(G) of a graphG is the smallest integer k such that the vertex set of G can be partitioned into sets Vi, i ∈ [k], where each Vi is an i-packing. In this paper, we investigate for a given triple (a, b, c) of positive integers whether there exists a graph G such that ω(G) = a, χ(G) = b, and χρ(G) = c. If so, we say that (a, b, c) is realizable. It is proved that b =...

متن کامل

On the packing chromatic number of some lattices

For a positive integer k, a k-packing in a graph G is a subset A of vertices such that the distance between any two distinct vertices from A is more than k. The packing chromatic number of G is the smallest integer m such that the vertex set of G can be partitioned as V1, V2, . . . , Vm where Vi is an i-packing for each i. It is proved that the planar triangular lattice T and the 3-dimensional ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Notes in Discrete Mathematics

سال: 2013

ISSN: 1571-0653

DOI: 10.1016/j.endm.2013.10.041