On the Numerical Solution of the Time-Dependent Schrödinger Equation
نویسندگان
چکیده
منابع مشابه
Numerical solution for one-dimensional independent of time Schrödinger Equation
In this paper, one of the numerical solution method of one- particle, one dimensional timeindependentSchrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function V(x).For each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. The paper ended with a comparison ...
متن کاملNumerical solution of time-dependent foam drainage equation (FDE)
Reduced Differental Transform Method (RDTM), which is one of the useful and effective numerical method, is applied to solve nonlinear time-dependent Foam Drainage Equation (FDE) with different initial conditions. We compare our method with the famous Adomian Decomposition and Laplace Decomposition Methods. The obtained results demonstrated that RDTM is a powerful tool for solving nonlinear part...
متن کاملnumerical solution for one-dimensional independent of time schrödinger equation
in this paper, one of the numerical solution method of one- particle, one dimensional timeindependentschrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function v(x).for each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. the paper ended with a comparison ...
متن کاملAccurate numerical solutions of the time-dependent Schrödinger equation.
We present a generalization of the often-used Crank-Nicolson (CN) method of obtaining numerical solutions of the time-dependent Schrödinger equation. The generalization yields numerical solutions accurate to order (Deltax)2r-1 in space and (Deltat)2M in time for any positive integers r and M, while CN employ r=M=1. We note dramatic improvement in the attainable precision (circa ten or greater o...
متن کاملSolution of the Time-dependent Schrödinger Equation Using Interpolating Wavelets
An adaptive numerical method for solution of the time-dependent Schrödinger equation is presented. By using an interpolating wavelet transform the number of used points can be reduced, constructing an adaptive sparse point representation. Two di erent discretisation approaches are studied in 1D ; one point-based and one based on equidistant blocks. Due to the nature of the wavelet transform a s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 1995
ISSN: 0021-9991
DOI: 10.1006/jcph.1995.1128