ON THE NUMBER OF POINTS OVER FINITE FIELDS ON VARIETIES RELATED TO CLUSTER ALGEBRAS
نویسندگان
چکیده
منابع مشابه
On the number of points over finite fields on varieties related to cluster algebras
We compute the number of points over finite fields of some algebraic varieties related to cluster algebras of finite type. More precisely, these varieties are the fibers of the projection map from the cluster variety to the affine space of coefficients.
متن کاملOn the number of rational points on Prym varieties over finite fields
We give upper and lower bounds for the number of rational points on Prym varieties over finite fields. Moreover, we determine the exact maximum and minimum number of rational points on Prym varieties of dimension 2.
متن کاملOn the Number of Rational Points on Drinfeld Modular Varieties over Finite Fields
Drinfeld and Vladut proved that Drinfeld modular curves have many Fq2 -rational points compared to their genera. We propose a conjectural generalization of this result to higher dimensional Drinfeld modular varieties, and prove a theorem giving some evidence for the conjecture.
متن کاملGroups of Points on Abelian Varieties over Finite Fields
Fix an isogeny class of abelian varieties with commutative endomorphism algebra over a finite field. This isogeny class is determined by a Weil polynomial fA without multiple roots. We give a classification of groups of k-rational points on varieties from this class in terms of Newton polygons of fA(1− t).
متن کاملGroups of Rational Points on Abelian Varieties over Finite Fields
Fix an isogeny class of abelian varieties with commutative endomorphism algebra over a finite field. This isogeny class is determined by a Weil polynomial fA without multiple roots. We give a classification of groups of rational points on varieties from this class in terms of Newton polygons of fA(1− t).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 2010
ISSN: 0017-0895,1469-509X
DOI: 10.1017/s0017089510000777