On the number of integral ideals in a number field

نویسندگان

چکیده

We update Sunley's explicit estimate for the ideal-counting function, which is number of integral ideals bounded norm in a field.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A remark on the means of the number of divisors

‎We obtain the asymptotic expansion of the sequence with general term $frac{A_n}{G_n}$‎, ‎where $A_n$ and $G_n$ are the arithmetic and geometric means of the numbers $d(1),d(2),dots,d(n)$‎, ‎with $d(n)$ denoting the number of positive divisors of $n$‎. ‎Also‎, ‎we obtain some explicit bounds concerning $G_n$ and $frac{A_n}{G_n}$.

متن کامل

Hecke’s integral formula for quadratic extensions of a number field

Let K/F be a quadratic extension of number fields. After developing a theory of the Eisenstein series over F , we prove a formula which expresses a partial zeta function of K as a certain integral of the Eisenstein series. As an application, we obtain a limit formula of Kronecker’s type which relates the 0-th Laurent coefficients at s = 1 of zeta functions of K and F .

متن کامل

On the Number of Integral Graphs

We show that at most a 2−cn 3/2 proportion of graphs on n vertices have integral spectrum. This improves on previous results of Ahmadi, Alon, Blake, and Shparlinski (2009), who showed that the proportion of such graphs was exponentially small.

متن کامل

A note on the Roman domatic number of a digraph

Roman dominating function} on a digraph $D$ with vertex set $V(D)$ is a labeling$fcolon V(D)to {0, 1, 2}$such that every vertex with label $0$ has an in-neighbor with label $2$. A set ${f_1,f_2,ldots,f_d}$ ofRoman dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vin V(D)$,is called a {em Roman dominating family} (of functions) on $D$....

متن کامل

On the Index of a Number Field

Arithmetic invariants are found which determine the index i(K) of a number field K. They are used to obtain an explicit formula under certain restrictions on K. They provide also a complete explanation of a phenomenon conjectured by Ore [8] and showed by Engstrom in a particular case [2]. Introduction. The index of a finite number field K is defined as i(K) = g.c.d.[i(8)/0 g ^integer, K= Q(6)},...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2023

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2022.126585