On the Minimization of Total Mean Curvature

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipschitzian Mappings and Total Mean Curvature

For a smooth closed surface C in E3 the classical total mean curvature is defined by M(C) = ¿/(«i + k2) do(p), where kx, k2 are the principal curvatures at p on C. If C is a polyhedral surface, there is a well known discrete version given by M(C) = IE/,(w a,), where 1¡ represents edge length and a, the corresponding dihedral angle along the edge. In this article formulas involving differentials...

متن کامل

Total Mean Curvature and Closed Geodesics

The proofs and applications are based on a Riemannian version of Gromov’s non-squeezing theorem and classical integral geometry. Given a convex surface Σ ⊂ R and a point q in the unit sphere S we denote by UΣ(q) the perimeter of the orthogonal projection of Σ onto a plane perpendicular to q. We obtain a function UΣ on the sphere which is clearly continuous, even, and positive. Let us denote the...

متن کامل

Mean Curvature Blowup in Mean Curvature Flow

In this note we establish that finite-time singularities of the mean curvature flow of compact Riemannian submanifolds M t →֒ (N, h) are characterised by the blow up of the mean curvature.

متن کامل

survey on the rule of the due & hindering relying on the sheikh ansaris ideas

قاعده مقتضی و مانع در متون فقهی کم و بیش مستند احکام قرار گرفته و مورد مناقشه فقهاء و اصولیین می باشد و مشهور معتقند مقتضی و مانع، قاعده نیست بلکه یکی از مسائل ذیل استصحاب است لذا نگارنده بر آن شد تا پیرامون این قاعده پژوهش جامعی انجام دهد. به عقیده ما مقتضی دارای حیثیت مستقلی است و هر گاه می گوییم مقتضی احراز شد یعنی با ماهیت مستقل خودش محرز گشته و قطعا اقتضاء خود را خواهد داشت مانند نکاح که ...

15 صفحه اول

On Two Mean Curvature Equations

This paper is an exposition of some results concerning two distinct mean curvature equations which have been obtained recently by the author and others. We also propose some unsolved problems and new questions arising from ours developments.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Geometric Analysis

سال: 2015

ISSN: 1050-6926,1559-002X

DOI: 10.1007/s12220-015-9646-y