On the main signless Laplacian eigenvalues of a graph
نویسندگان
چکیده
منابع مشابه
Ela on the Main Signless Laplacian Eigenvalues of a Graph
A signless Laplacian eigenvalue of a graph G is called a main signless Laplacian eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero. In this paper, some necessary and sufficient conditions for a graph with one main signless Laplacian eigenvalue or two main signless Laplacian eigenvalues are given. And the trees and unicyclic graphs with exactly two main signless L...
متن کاملOn the sum of signless Laplacian eigenvalues of a graph
For a simple graph G, let e(G) denote the number of edges and Sk(G) denote the sum of the k largest eigenvalues of the signless Laplacian matrix of G. We conjecture that for any graph G with n vertices, Sk(G) ≤ e(G) + k+1 2 for k = 1, . . . , n. We prove the conjecture for k = 2 for any graph, and for all k for regular graphs. The conjecture is an analogous to a conjecture by A.E. Brouwer with ...
متن کاملRemoteness and distance, distance (signless) Laplacian eigenvalues of a graph
Let G be a connected graph of order n. The remoteness of G, denoted by ρ, is the maximum average distance from a vertex to all other vertices. Let [Formula: see text], [Formula: see text] and [Formula: see text] be the distance, distance Laplacian and distance signless Laplacian eigenvalues of G, respectively. In this paper, we give lower bounds on [Formula: see text], [Formula: see text], [For...
متن کاملA relation between the Laplacian and signless Laplacian eigenvalues of a graph
Let G be a graph of order n such that ∑n i=0(−1)iaiλn−i and ∑n i=0(−1)ibiλn−i are the characteristic polynomials of the signless Laplacian and the Laplacian matrices of G, respectively. We show that ai ≥ bi for i = 0,1, . . . , n. As a consequence, we prove that for any α, 0 < α ≤ 1, if q1, . . . , qn and μ1, . . . ,μn are the signless Laplacian and the Laplacian eigenvalues of G, respectively,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Linear Algebra
سال: 2013
ISSN: 1081-3810
DOI: 10.13001/1081-3810.1659