On the Linear Integral Equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

APPROXIMATION SOLUTION OF TWO-DIMENSIONAL LINEAR STOCHASTIC FREDHOLM INTEGRAL EQUATION BY APPLYING THE HAAR WAVELET

In this paper, we introduce an efficient method based on Haar wavelet to approximate a solutionfor the two-dimensional linear stochastic Fredholm integral equation. We also give an example to demonstrate the accuracy of the method.  

متن کامل

On an Integral Equation

In the recent paper [2], the authors obtained new proofs on the existence and uniqueness of the solution of the Volterra linear equation. Applying their results, in this paper we express the exact and approximate solution of the equation in the field of Mikusi´nski operators, F, which corresponds to an integro–differential equation.

متن کامل

Piecewise Constant Solution of Non Linear Volterra Integral Equation

In this paper, modification in the computational methods, for solving Non-linear Volterra integral equations, is presented. Here, two piecewise constant methods are considered for obtaining the solutions. The first method is based on Walsh Functions (WF) and the second method is via Block Pulse Functions (BPF). Comparison between the two methods is presented by calculating the errors vis-à-vis ...

متن کامل

Error Analysis for Direct Linear Integral Equation Methods*

An error analysis of projection methods for solving linear integral equations of the second kind is presented. The relationships between several direct methods for solving integral equations are examined. It is shown that the error analysis given is applicable to other methods, including a modified Nyström method and certain degenerate kernel methods.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the London Mathematical Society

سال: 1914

ISSN: 0024-6115

DOI: 10.1112/plms/s2-13.1.307