On the Kirwan map for moduli of Higgs bundles

نویسندگان

چکیده

Let $C$ be a smooth complex projective curve and $G$ connected reductive group. We prove that if the center $Z(G)$ of is disconnected, then Kirwan map $H^*\big(\operatorname{Bun}(G,C),\mathbb{Q}\big)\rightarrow H^*\big(\mathcal{M}_{\operatorname{Higgs}}^{\operatorname{ss}},\mathbb{Q}\big)$ from cohomology moduli stack $G$-bundles to semistable $G$-Higgs bundles, fails surjective: more precisely, variant (and intersection cohomology) $\mathcal{M}_{\operatorname{Higgs}}^{\operatorname{ss}}$ always nontrivial. also show image pullback $H^*\big(M_{\operatorname{Higgs}}^{\operatorname{ss}},\mathbb{Q}\big)\rightarrow H^*\big(\mathcal{M}_{\operatorname{Higgs}}^{\operatorname{ss}},\mathbb{Q}\big)$, space bundles cannot contained in map. The proof uses Borel-Quillen--style localization result for equivariant stacks reduce an explicit construction calculation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moduli of Higgs Bundles

2 Local symplectic, complex and Kähler geometry: a quick review 10 2.1 Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Symplectic manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Symplectic quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Complex manifolds . . . . . . . . . . . . . . ....

متن کامل

Morse Theory and Hyperkähler Kirwan Surjectivity for Higgs Bundles

This paper uses Morse-theoretic techniques to compute the equivariant Betti numbers of the space of semistable rank two degree zero Higgs bundles over a compact Riemann surface, a method in the spirit of Atiyah and Bott’s original approach for semistable holomorphic bundles. This leads to a natural proof that the hyperkähler Kirwan map is surjective for the non-fixed determinant case. CONTENTS

متن کامل

Compactification of moduli of Higgs bundles

In this paper we consider a canonical compactification of M, the moduli space of stable Higgs bundles with fixed determinant of odd degree over a Riemann surface Σ, producing a projective variety M̄ = M∪Z. We give a detailed study of the spaces M̄, Z and M. In doing so we reprove some assertions of Laumon and Thaddeus on the nilpotent cone.

متن کامل

Variation of moduli of parabolic Higgs bundles

A moduli problem in algebraic geometry is the problem of constructing a space parametrizing all objects of some kind modulo some equivalence. If the equivalence is anything but equality, one usually has to impose some sort of stability condition on the objects represented. In many cases, however, this stability condition is not canonical, but depends on a parameter, which typically varies in a ...

متن کامل

Geometry of Moduli Spaces of Higgs Bundles

We construct a Petersson-Weil type Kähler form on the moduli spaces of Higgs bundles over a compact Kähler manifold. A fiber integral formula for this form is proved, from which it follows that the Petersson-Weil form is the curvature of a certain determinant line bundle, equipped with a Quillen metric, on the moduli space of Higgs bundles over a projective manifold. The curvature of the Peters...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebraic geometry

سال: 2021

ISSN: ['2313-1691', '2214-2584']

DOI: https://doi.org/10.14231/ag-2021-011