On the insertion of Darboux, Baire-one functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recovering Baire One Functions on Ultrametric Spaces

We find a characterization of those Polish ultrametric spaces on which each Baire one function is first return recoverable. The notion of pseudo-convergence originating in the theory of valuation fields plays a crucial role in the characterization.

متن کامل

Functions Whose Composition with Baire Class One Functions Are Baire Class One

We study the functions whose composition with Baire class one functions are Baire class one functions. We first prove some characterizations of such functions, then investigate a subclass of such functions which are defined in a natural way.

متن کامل

On the Products of Bounded Dar- Boux Baire One Functions

It is shown that for each k > 1, if f is a Baire one function and f is the product of k bounded Darboux (quasi–continuous) functions, then f is the product of k bounded Darboux (quasi–continuous) Baire one functions as well.

متن کامل

Connectivity of diagonal products of Baire one functions

We characterize those Baire one functions f for which the diagonal product x 7→ (f(x), g(x)) has a connected graph whenever g is approximately continuous or is a derivative.

متن کامل

On Baire and Harmonic Functions

We consider two spaces of harmonic functions. First, the space H(U) of functions harmonic on a bounded open subset U of R and continuous to the boundary. Second, the space H0(K) of functions on a compact subset K of R n which can be harmonically extended on some open neighbourhood of K. A bounded open subset U of R is called stable if the space H(U) is equal to the uniform closure of H0(U ). We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fundamenta Mathematicae

سال: 1973

ISSN: 0016-2736,1730-6329

DOI: 10.4064/fm-80-2-157-167