On the growth of $\mu $-invariant in Iwasawa theory of supersingular elliptic curves

نویسندگان

چکیده

We provide a relation between the $\mu $-invariants of dual plus and minus Selmer groups for supersingular elliptic curves when we ascend from cyclotomic ${\mathbb Z}_p$-extension to Z}_p^2$-extension over an imaginary quadratic field.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iwasawa Theory for Elliptic Curves

The topics that we will discuss have their origin in Mazur’s synthesis of the theory of elliptic curves and Iwasawa’s theory of ZZp-extensions in the early 1970s. We first recall some results from Iwasawa’s theory. Suppose that F is a finite extension of Q and that F∞ is a Galois extension of F such that Gal(F∞/F ) ∼= ZZp, the additive group of p-adic integers, where p is any prime. Equivalentl...

متن کامل

Anticyclotomic Iwasawa Theory of Cm Elliptic Curves

We study the Iwasawa theory of a CM elliptic curve E in the anticyclotomic Zp-extension of the CM field, where p is a prime of good, ordinary reduction for E. When the complex L-function of E vanishes to even order, Rubin’s proof the two variable main conjecture of Iwasawa theory implies that the Pontryagin dual of the p-power Selmer group over the anticyclotomic extension is a torsion Iwasawa ...

متن کامل

Plus/minus Heegner Points and Iwasawa Theory of Elliptic Curves at Supersingular Primes

Let E be an elliptic curve over Q and let p ≥ 5 be a prime of good supersingular reduction for E. Let K be an imaginary quadratic field satisfying a modified “Heegner hypothesis” in which p splits, write K∞ for the anticyclotomic Zp-extension of K and let Λ denote the Iwasawa algebra of K∞/K. By extending to the supersingular case the Λ-adic Kolyvagin method originally developed by Bertolini in...

متن کامل

Iwasawa Theory of Elliptic Curves at Supersingular Primes over Zp-extensions of Number Fields

In this paper, we make a study of the Iwasawa theory of an elliptic curve at a supersingular prime p along an arbitrary Zp-extension of a number field K in the case when p splits completely in K. Generalizing work of Kobayashi [9] and Perrin-Riou [17], we define restricted Selmer groups and λ±, μ±-invariants; we then derive asymptotic formulas describing the growth of the Selmer group in terms ...

متن کامل

Lectures on the Iwasawa Theory of Elliptic Curves

These are a very preliminary (and incomplete!) version of the author’s lectures for the 2018 Arizona Winter School on Iwasawa Theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2022

ISSN: ['0065-1036', '1730-6264']

DOI: https://doi.org/10.4064/aa200724-11-7