On the Generic Structure of Cohomology Modules for Semisimple Algebraic Groups
نویسندگان
چکیده
منابع مشابه
Notes on Weyl modules for semisimple algebraic groups
Over many decades of development, there has been some evolution in the language and notation used for Weyl modules in the theory of semisimple algebraic groups in prime characteristic. Here we survey this evolution briefly, in the hope of clarifying what goes on in the literature. We also discuss briefly the related notion of tilting module. Since our emphasis is on rational representations, it...
متن کاملThe Cohomology of Small Irreducible Modules for Simple Algebraic Groups
LetG be a quasisimple, connected, and simply connected algebraic group defined and split over the field k of characteristic p > 0. In this paper, we are interested in small modules for G; for us, small modules are those with dimension ≤ p. By results of Jantzen [Jan96] one knows that anyGmodule V with dimV ≤ p is semisimple. (We always understand aG-module V to be given by a morphism of algebra...
متن کاملOn Dwork Cohomology and Algebraic D-modules
After works by Katz, Monsky, and Adolphson-Sperber, a comparison theorem between relative de Rham cohomology and Dwork cohomology is established in a paper by Dimca-Maaref-Sabbah-Saito in the framework of algebraic D-modules. We propose here an alternative proof of this result. The use of Fourier transform techniques makes our approach more functorial. 1. Review of algebraic D-modules For the r...
متن کاملStructure of Cohomology of Line Bundles on G/B for Semisimple Groups Short running title: Cohomology of Line Bundles
Let G be a connected and simply connected semisimple algebraic group over an algebraically closed field k of characteristic p > 0, T a maximal torus of G and B a Borel subgroup containing T . Each weight in X(T ) determines a line bundle on the flag varietyG/B. It turns out that cohomology of the line bundle is isomorphic to the derived functor of the induction functors from the category of B-m...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1986
ISSN: 0002-9947
DOI: 10.2307/2000163