On the Generative Power of ω-Grammars and ω-Automata

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Generative Power of ω-Grammars and ω-Automata

An ω-grammar is a formal grammar used to generateω-words (i.e. infinite length words), while an ω-automaton is an automaton used to recognize ω-words. This paper gives clean and uniform definitions for ω-grammars and ω-automata, provides a systematic study of the generative power of ω-grammars with respect to ω-automata, and presents a complete set of results for various types of ω-grammars and...

متن کامل

Determinization Complexities of ω Automata

Complementation and determinization are two fundamental notions in automata theory. The close relationship between the two has been well observed in the literature. In the case of nondeterministic finite automata on finite words (NFA), complementation and determinization have the same state complexity, namely Θ(2) where n is the state size. The same similarity between determinization and comple...

متن کامل

Blind Counter Automata on ω-Words

This paper generalizes the concept of blind multicounter languages to infinite words. We introduce two different acceptance modes of blind multicounter machines on ω-words, called synchrononous and asynchronous acceptance. These acceptance modes are compared with each other and with families of ω-languages of the form L = ⋃ 1≤i≤k UiV ω i , where Ui, Vi are finitary blind multicounter languages.

متن کامل

Promptness in ω-regular Automata

Liveness properties of on-going reactive systems assert that something good will happen eventually. In satisfying liveness properties, there is no bound on the “wait time”, namely the time that may elapse until an eventuality is fulfilled. The traditional “unbounded” semantics of liveness properties nicely corresponds to the classical semantics of automata on infinite objects. Indeed, acceptanc...

متن کامل

Typeness for ω-Regular Automata

We introduce and study three notions of typeness for automata on infinite words. For an acceptance-condition class γ (that is, γ is weak, Büchi, co-Büchi, Rabin, or Streett), deterministic γ-typeness asks for the existence of an equivalent γ-automaton on the same deterministic structure, nondeterministic γ-typeness asks for the existence of an equivalent γ-automaton on the same structure, and γ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fundamenta Informaticae

سال: 2011

ISSN: 0169-2968

DOI: 10.3233/fi-2011-557