On the Galois theory of generalized Laguerre polynomials and trimmed exponential

نویسندگان

چکیده

Inspired by the work of Schur on Taylor series exponential and Laguerre polynomials, we study Galois theory trimmed exponentials $f_{n,n+k}=\sum _{i=0}^{k} {x^{i}/(n+i)!}$ generalized polynomials $L^{(n)}_k$ degree

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Galois Group of generalized Laguerre polynomials

Using the theory of Newton Polygons, we formulate a simple criterion for the Galois group of a polynomial to be “large.” For a fixed α ∈ Q−Z<0, Filaseta and Lam have shown that the nth degree Generalized Laguerre Polynomial L (α) n (x) = ∑n j=0 ( n+α n−j ) (−x)/j! is irreducible for all large enough n. We use our criterion to show that, under these conditions, the Galois group of L (α) n (x) is...

متن کامل

On the Genus of Generalized Laguerre Polynomials

belong to one of the three family of orthogonal polynomials, the other two being Jacobi and Legendre. In addition to their important roles in mathematical analysis, these polynomials also feature prominently in algebra and number theory. Schur ([7], [8]) pioneered the study of Galois properties of specializations of these orthogonal polynomials, and Feit [1] used them to solve the inverse Galoi...

متن کامل

Specializations of Generalized Laguerre Polynomials

Three specializations of a set of orthogonal polynomials with “8 different q’s” are given. The polynomials are identified as q-analogues of Laguerre polynomials, and the combinatorial interpretation of the moments give infinitely many new Mahonian statistics on permutations.

متن کامل

Laguerre-type exponentials and generalized Appell polynomials

General classes of two variables Appell polynomials are introduced by exploiting properties of an iterated isomorphism, related to the so called Laguerre-type exponentials. Further extensions to the multi-index and multivariable cases are mentioned. 2000 Mathematics Subject Classification. 33C45, 33C99, 30D05, 33B10.

متن کامل

Generalized Exponential Euler Polynomials and Exponential Splines

Here presented is constructive generalization of exponential Euler polynomial and exponential splines based on the interrelationship between the set of concepts of Eulerian polynomials, Eulerian numbers, and Eulerian fractions and the set of concepts related to spline functions. The applications of generalized exponential Euler polynomials in series transformations and expansions are also given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2021

ISSN: ['0065-1036', '1730-6264']

DOI: https://doi.org/10.4064/aa200825-7-3