On The Fekete-Szegö Problem for Generalized Class <i>M</i>α,γ(β) Defined By Differential Operator
نویسندگان
چکیده
منابع مشابه
The Fekete – Szegö problem for a class of analytic functions defined by Carlson – Shaffer operator
In the present investigation we solve Fekete–Szegö problem for the generalized linear differential operator. In particular, our theorems contain corresponding results for various subclasses of strongly starlike and strongly convex functions.
متن کاملFekete-Szegö Problem for a New Class of Analytic Functions
which are analytic in the open unit disk U {z : z ∈ C and |z| < 1} and S denote the subclass ofA that are univalent in U. A function f z inA is said to be in class S∗ of starlike functions of order zero in U, if R zf ′ z /f z > 0 for z ∈ U. Let K denote the class of all functions f ∈ A that are convex. Further, f is convex if and only if zf ′ z is star-like. A function f ∈ A is said to be close...
متن کاملThe Fekete-szegö Problem for a Class Defined by the Hohlov Operator
Let A be the class of analytic functions in the open unit disk U . For complex numbers a, b and c (c 6= 0,−1,−2, ....), let I c be the operator defined on A by (I c (f))(z) = z2F1(a, b; c; z) ∗ f(z) where 2F1(a, b; c; z) is the Gaussian hypergeometric function. The function f in A is said to be in the class k − SP c if I a,b c (f) is a k-parabolic starlike function. For this class the Fekete-Sz...
متن کاملThe Fekete-Szegö problem for a general class of bi-univalent functions satisfying subordinate conditions
In this work, we obtain the Fekete-Szegö inequalities for the class $P_{Sigma }left( lambda ,phi right) $ of bi-univalent functions. The results presented in this paper improve the recent work of Prema and Keerthi [11].
متن کاملOn the Fekete-Szegö inequality for a class of analytic functions defined by using the generalized Sălăgean operator
In this paper we obtain the Fekete-Szegö inequality for a class of analytic functions f(z) defined in the open unit disk for which
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SDÜ Fen Bilimleri Enstitüsü Dergisi
سال: 2016
ISSN: 1308-6529,1300-7688
DOI: 10.19113/sdufbed.12069