On the Diophantine equation z2 = x4 + Dx2y2 + y4

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Diophantine Equation x4 ± y4 = iz2 in Gaussian Integers

The Diophantine equation x4 ± y4 = z2, where x, y and z are integers was studied by Fermat, who proved that there exist no nontrivial solutions. Fermat proved this using the infinite descent method, proving that if a solution can be found, then there exists a smaller solution (see for example [1], Proposition 6.5.3). This was the first particular case proven of Fermat’s Last Theorem (which was ...

متن کامل

The Diophantine Equation 8x + py = z2

Let p be a fixed odd prime. Using certain results of exponential Diophantine equations, we prove that (i) if p ≡ ± 3(mod  8), then the equation 8 (x) + p (y) = z (2) has no positive integer solutions (x, y, z); (ii) if p ≡ 7(mod  8), then the equation has only the solutions (p, x, y, z) = (2 (q) - 1, (1/3)(q + 2), 2, 2 (q) + 1), where q is an odd prime with q ≡ 1(mod  3); (iii) if p ≡ 1(mod  8)...

متن کامل

On the Diophantine Equation

In this paper, we study the Diophantine equation x2 + C = 2yn in positive integers x, y with gcd(x, y) = 1, where n ≥ 3 and C is a positive integer. If C ≡ 1 (mod 4) we give a very sharp bound for prime values of the exponent n; our main tool here is the result on existence of primitive divisors in Lehmer sequence due Bilu, Hanrot and Voutier. When C 6≡ 1 (mod 4) we explain how the equation can...

متن کامل

On the Diophantine Equation

= c for some integers a, b, c with ab 6= 0, has only finitely many integer solutions. Stoll & Tichy proved more generally that if a, b, c ∈ Q and ab 6= 0, then for m > n ≥ 3, the above equation has only finitely many integral solutions x, y. Independently, Rakaczki established a more precise finiteness result on this binomial equation and extended this result to more general equations (see Acta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 1994

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s001708950003086x