On the coprimality of some arithmetic functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Coprimality of Some Arithmetic Functions

Let φ stand for the Euler function. Given a positive integer n, let σ(n) stand for the sum of the positive divisors of n and let τ(n) be the number of divisors of n. We obtain an asymptotic estimate for the counting function of the set {n : gcd(φ(n), τ(n)) = gcd(σ(n), τ(n)) = 1}. Moreover, setting l(n) := gcd(τ(n), τ(n+ 1)), we provide an asymptotic estimate for the size of #{n 6 x : l(n) = 1}.

متن کامل

On the Iterates of Some Arithmetic Functions

1. Introduction. For any arithmetic function f(n), we denote its iterates as follows : f l (n) = f (n) , fk (n) = fl[ fk_1(n) ] (k > 1). Let a(n) and a* (n) denote,'respectívely, the sum of the divisors of n, and the sum of its unitary divisors, where we recall that d is called a unitary divisor of n if (d,n/d) = 1. Makowski and Schinzel [3] proved that and conjectured that ak (n) lim inf n < o...

متن کامل

Some Related Functions to Integer GCD and Coprimality

We generalize a formula of B. Litow [7] and propose several new formula linked with the parallel Integer Coprimality, Integer GCD and Modular Inverse problems as well. Particularly, we find a new trigonometrical definition of the GCD of two integers a, b ≥ 1 : gcd(a, b) = 1 π ∫ π 0 cos[ (b− a)x ] sin (abx) sin(ax) sin(bx) dx. We also suggest a generalization of the GCD function to real numbers.

متن کامل

Some remarks on the arithmetic-geometric index

Using an identity for effective resistances, we find a relationship between the arithmetic-geometric index and the global ciclicity index. Also, with the help of majorization, we find tight upper and lower bounds for the arithmetic-geometric index.

متن کامل

On the Composition of Some Arithmetic Functions, Ii

We study certain properties and conjuctures on the composition of the arithmetic functions σ, φ, ψ, where σ is the sum of divisors function, φ is Euler’s totient, and ψ is Dedekind’s function.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publications de l'Institut Mathematique

سال: 2010

ISSN: 0350-1302,1820-7405

DOI: 10.2298/pim1001121d