On the Convergence of Implicit Picard Iterative Sequences for Strongly Pseudocontractive Mappings in Banach Spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Convergence of Implicit Picard Iterative Sequences for Strongly Pseudocontractive Mappings in Banach Spaces

⟨(I − T) x − (I − T) y, j (x − y)⟩ ≥ k 󵄩󵄩󵄩󵄩x − y 󵄩󵄩󵄩󵄩 2 (4) for all x, y ∈ D(T), where k = (t − 1)/t ∈ (0, 1). Consequently, from inequality (4) it follows easily that T is strongly pseudocontractive if and only if 󵄩󵄩󵄩󵄩x − y 󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩x − y + s [(I − T − kI) x − (I − T − kI) y] 󵄩󵄩󵄩󵄩 (5) for all x, y ∈ D(T) and s > 0. Closely related to the class of pseudocontractive maps is the class of accret...

متن کامل

On the Convergence of Iterative Processes for Generalized Strongly Asymptotically ϕ-Pseudocontractive Mappings in Banach Spaces

Throughout this paper, we assume that X is a uniformly convex Banach space and X∗ is the dual space of X. Let J denote the normalized duality mapping form X into 2 ∗ given by J x {f ∈ X∗ : 〈x, f〉 ‖x‖2 ‖f‖2} for all x ∈ X, where 〈·, ·〉 denotes the generalized duality pairing. It is well known that if X is uniformly smooth, then J is single valued and is norm to norm uniformly continuous on any b...

متن کامل

Iterative Methods for Pseudocontractive Mappings in Banach Spaces

and Applied Analysis 3 Lemma 1 (see [1, 2]). Let E be a Banach space and let J be the normalized duality mapping on E. Then for any x, y ∈ E, the following inequality holds: 󵄩󵄩󵄩󵄩x + y 󵄩󵄩󵄩󵄩 2 ≤ ‖x‖ 2 + 2⟨y, j (x + y)⟩, ∀j (x + y) ∈ J (x + y) . (14) Lemma 2 (see [20]). Let {s n } be a sequence of nonnegative real numbers satisfying s n+1 ≤ (1 − λ n ) s n + λ n δ n , ∀n ≥ 0, (15) where {λ n } and ...

متن کامل

Convergence of Ishikawa iterative sequence for strongly pseudocontractive operators in arbitrary Banach spaces

Under the condition of removing the restriction any bounded, we give the convergence of the Ishikawa iteration process to a unique fixed point of a strongly pseudocontractive operator in arbitrary real Banach space. Furthermore, general convergence rate estimate is given in our results, which extend the recent results of Ciric [3] and Soltuz [12]. AMS subject classifications: Primary 47H10; Sec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics

سال: 2013

ISSN: 1110-757X,1687-0042

DOI: 10.1155/2013/284937