On the Betti numbers of real varieties

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-degree Bounds on the Betti Numbers of Real Varieties and Semi-algebraic Sets and Applications

We prove new bounds on the Betti numbers of real varieties and semi-algebraic sets that have a more refined dependence on the degrees of the polynomials defining them than results known before. Our method also unifies several different types of results under a single framework, such as bounds depending on the total degrees, on multi-degrees, as well as in the case of quadratic and partially qua...

متن کامل

Characteristic Varieties and Betti Numbers of Free Abelian Covers

The regular Z-covers of a finite cell complex X are parameterized by the Grassmannian of r-planes in H(X,Q). Moving about this variety, and recording when the Betti numbers b1, . . . , bi of the corresponding covers are finite carves out certain subsets Ωr(X) of the Grassmannian. We present here a method, essentially going back to Dwyer and Fried, for computing these sets in terms of the jump l...

متن کامل

On the Complexity of Counting Irreducible Components and Computing Betti Numbers of Algebraic Varieties

This thesis is a continuation of the study of counting problems in algebraic geometry within an algebraic framework of computation started by Bürgisser, Cucker, and Lotz in a series of papers [BC03, BC06, BCL05]. In its first part we give a uniform method for the two problems #CCC and #ICC of counting the connected and irreducible components of complex algebraic varieties, respectively. Our alg...

متن کامل

Bounds on the individual Betti numbers of complex varieties, stability and algorithms

We prove graded bounds on the individual Betti numbers of affine and projective complex varieties. In particular, we give for each p, d, r, explicit bounds on the p-th Betti numbers of affine and projective subvarieties of Ck and PC, defined by r polynomials of degrees at most d as a function of p, d and r. Unlike previous bounds these bounds are independent of k, the dimension of the ambient s...

متن کامل

On the Betti Numbers of Chessboard Complexes

In this paper we study the Betti numbers of a type of simplicial complex known as a chessboard complex. We obtain a formula for their Betti numbers as a sum of terms involving partitions. This formula allows us to determine which is the first nonvanishing Betti number (aside from the 0-th Betti number). We can therefore settle certain cases of a conjecture of Björner, Lovász, Vrećica, and Z̆ival...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1964

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1964-0161339-9