On the anticyclotomic Iwasawa theory of rational elliptic curves at Eisenstein primes
نویسندگان
چکیده
Let $$E/{\mathbb {Q}}$$ be an elliptic curve and p odd prime where E has good reduction, assume that admits a rational p-isogeny. In this paper we study the anticyclotomic Iwasawa theory of over imaginary quadratic field in which splits, relate to characters by variation method Greenberg–Vatsal. As result our obtain proofs (under relatively mild hypotheses) Perrin-Riou’s Heegner point main conjecture, p-converse theorem Gross–Zagier Kolyvagin, p-part Birch–Swinnerton-Dyer formula analytic rank 1, for Eisenstein primes p.
منابع مشابه
Anticyclotomic Iwasawa Theory of Cm Elliptic Curves
We study the Iwasawa theory of a CM elliptic curve E in the anticyclotomic Zp-extension of the CM field, where p is a prime of good, ordinary reduction for E. When the complex L-function of E vanishes to even order, Rubin’s proof the two variable main conjecture of Iwasawa theory implies that the Pontryagin dual of the p-power Selmer group over the anticyclotomic extension is a torsion Iwasawa ...
متن کاملAnticyclotomic Iwasawa Theory of Cm Elliptic Curves Ii
We study the Iwasawa theory of a CM elliptic curve E in the anticyclotomic Zpextension D∞ of the CM field K, where p is a prime of good, supersingular reduction for E. Our main result yields an asymptotic formula for the corank of the p-primary Selmer group of E along the extension D∞/K.
متن کاملThe anticyclotomic Main Conjecture for elliptic curves at supersingular primes
The Main Conjecture of Iwasawa theory for an elliptic curve E over Q and the anticyclotomic Zp-extension of an imaginary quadratic field K was studied in [BD2], in the case where p is a prime of ordinary reduction for E. Analogous results are formulated, and proved, in the case where p is a prime of supersingular reduction. The foundational study of supersingular main conjectures carried out by...
متن کاملIwasawa Theory for Elliptic Curves
The topics that we will discuss have their origin in Mazur’s synthesis of the theory of elliptic curves and Iwasawa’s theory of ZZp-extensions in the early 1970s. We first recall some results from Iwasawa’s theory. Suppose that F is a finite extension of Q and that F∞ is a Galois extension of F such that Gal(F∞/F ) ∼= ZZp, the additive group of p-adic integers, where p is any prime. Equivalentl...
متن کاملPlus/minus Heegner Points and Iwasawa Theory of Elliptic Curves at Supersingular Primes
Let E be an elliptic curve over Q and let p ≥ 5 be a prime of good supersingular reduction for E. Let K be an imaginary quadratic field satisfying a modified “Heegner hypothesis” in which p splits, write K∞ for the anticyclotomic Zp-extension of K and let Λ denote the Iwasawa algebra of K∞/K. By extending to the supersingular case the Λ-adic Kolyvagin method originally developed by Bertolini in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inventiones Mathematicae
سال: 2021
ISSN: ['0020-9910', '1432-1297']
DOI: https://doi.org/10.1007/s00222-021-01072-y