On the (29, 5)-Arcs in PG(2, 7) and Some Generalized Arcs in PG(2, q)

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Large (n, r)-arcs in PG(2, q)

An $(n, r)$-arc is a set of $n$ points of a projective plane such that some $r$, but no $r+1$ of them, are collinear. The maximum size of an $(n, r)$-arc in  $PG(2, q)$ is denoted by $m_r(2,q)$.  In this paper we present  a new $(184,12)$-arc in PG$(2,17),$  a new $(244,14)$-arc and a new $(267,15$)-arc in $PG(2,19).$

متن کامل

t-Pancyclic Arcs in Tournaments

Let $T$ be a non-trivial tournament. An arc is emph{$t$-pancyclic} in $T$, if it is contained in a cycle of length $ell$ for every $tleq ell leq |V(T)|$. Let $p^t(T)$ denote the number of $t$-pancyclic arcs in $T$ and $h^t(T)$ the maximum number of $t$-pancyclic arcs contained in the same Hamiltonian cycle of $T$. Moon ({em J. Combin. Inform. System Sci.}, {bf 19} (1994), 207-214) showed that $...

متن کامل

Complete arcs on the parabolic quadric Q(4, q)

Using the representation T2(O) of Q(4, q) and algebraic methods, we prove that complete (q2 − 1)-arcs of Q(4, q) do not exist when q = ph, p odd prime and h > 1. As a by-product we prove an embeddability theorem for the direction problem in AG(3, q). © 2007 Elsevier Inc. All rights reserved.

متن کامل

Primitive Arcs in PG(2, q)

We show that a complete arc K in the projective plane PG(2, q) admitting a transitive primitive group of projective transformations is either a cyclic arc of prime order or a known arc. If the completeness assumption is dropped, then K has either an affine primitive group, or K is contained in an explicit list. In order to find these primitive arcs, it is necessary to determine all complete k-a...

متن کامل

On sizes of complete arcs in PG(2, q)

New upper bounds on the smallest size t2(2, q) of a complete arc in the projective plane PG(2, q) are obtained for 853 ≤ q ≤ 5107 and q ∈ T1 ∪ T2, where T1 = {173, 181, 193, 229, 243, 257, 271, 277, 293, 343, 373, 409, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 529, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 661, 673, 677, 683, 691, 709}, and T2 = {5119, 5147, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2020

ISSN: 2227-7390

DOI: 10.3390/math8030320