On symmetric square values of quadratic polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Symmetric Square Values of Quadratic Polynomials

We prove that there does not exist a non-square quadratic polynomial with integer coefficients and an axis of symmetry which takes square values for N consecutive integers for N = 7 or N ≥ 9. At the opposite, if N ≤ 6 or N = 8 there are infinitely many.

متن کامل

Polynomials Assuming Square Values

If f(x1, ..., xn) ∈ Z[x1, ..., xn] has the property that every integer specialization gives an integral square value, then f is itself the square of a polynomial. We also give an effective version of this result by using an effective version of a classical theorem of E. Noether along with a theorem of Lang and Weil.

متن کامل

Powerful Values of Quadratic Polynomials

We study the set of those integers k such that n2+k is powerful for infinitely many positive integers n. We prove that most integers k have this property.

متن کامل

Square-free Values of Reducible Polynomials

We calculate admissible values of r such that a square-free polynomial with integer coefficients, no fixed prime divisor and irreducible factors of degree at most 3 takes infinitely many values that are a product of at most r distinct primes.

متن کامل

Smooth values of some quadratic polynomials

In this paper, using a method of Luca and the author, we find all values x such that the quadratic polynomials x + 1, x + 4, x + 2 and x − 2 are 200-smooth and all values x such that the quadratic polynomial x − 4 is 100-smooth.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2011

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa149-2-4