On static manifolds and related critical spaces with cyclic parallel Ricci tensor

نویسندگان

چکیده

Abstract We classify 3-dimensional compact Riemannian manifolds ( M 3 , g ) that admit a non-constant solution to the equation − Δfg +Hess f Ric = μ + λg for some special constants λ ), under assumption manifold has cyclic parallel Ricci tensor. Namely, structures we study here are: positive static triples, critical metrics of volume functional, and total scalar curvature functional. also n -dimensional functional with non-positive satisfying tensor condition.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost Kenmotsu 3-h-manifolds with cyclic-parallel Ricci tensor

In this paper, we prove that the Ricci tensor of an almost Kenmotsu 3-h-manifold is cyclic-parallel if and only if it is parallel and hence, the manifold is locally isometric to either the hyperbolic space H3(−1) or the Riemannian product H2(−4)× R. c ©2016 All rights reserved.

متن کامل

Ricci tensor for $GCR$-lightlike submanifolds of indefinite Kaehler manifolds

We obtain the expression of Ricci tensor for a $GCR$-lightlikesubmanifold of indefinite complex space form and discuss itsproperties on a totally geodesic $GCR$-lightlike submanifold of anindefinite complex space form. Moreover, we have proved that everyproper totally umbilical $GCR$-lightlike submanifold of anindefinite Kaehler manifold is a totally geodesic $GCR$-lightlikesubmanifold.

متن کامل

ricci tensor for $gcr$-lightlike submanifolds of indefinite kaehler manifolds

we obtain the expression of ricci tensor for a $gcr$-lightlikesubmanifold of indefinite complex space form and discuss itsproperties on a totally geodesic $gcr$-lightlike submanifold of anindefinite complex space form. moreover, we have proved that everyproper totally umbilical $gcr$-lightlike submanifold of anindefinite kaehler manifold is a totally geodesic $gcr$-lightlikesubmanifold.

متن کامل

Symmetries of the Ricci Tensor of Static Space-times with Maximal Symmetric Transverse Spaces

Static space times with maximal symmetric transverse spaces are classified according to their Ricci collineations. These are investigated for non-degenerate Ricci tensor (det.(Rα) 6= 0). It turns out that the only collineations admitted by these spaces can be ten, seven, six or four. Some new metrics admitting proper Ricci collineations are also investigated. PACS numbers: 04.20.-q, 04.20.Jb

متن کامل

Almost Kähler 4-manifolds with J-invariant Ricci Tensor and Special Weyl Tensor

for any tangent vectors X,Y to M . If the almost complex structure J is integrable we obtain a Kähler structure. Many efforts have been done in the direction of finding curvature conditions on the metric which insure the integrability of the almost complex structure. A famous conjecture of Goldberg [26] states that a compact almost Kähler, Einstein manifold is in fact Kähler. Important progress...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Geometry

سال: 2021

ISSN: ['1615-715X', '1615-7168']

DOI: https://doi.org/10.1515/advgeom-2020-0021