On stability of values of random zero-sum games
نویسندگان
چکیده
منابع مشابه
A TRANSITION FROM TWO-PERSON ZERO-SUM GAMES TO COOPERATIVE GAMES WITH FUZZY PAYOFFS
In this paper, we deal with games with fuzzy payoffs. We proved that players who are playing a zero-sum game with fuzzy payoffs against Nature are able to increase their joint payoff, and hence their individual payoffs by cooperating. It is shown that, a cooperative game with the fuzzy characteristic function can be constructed via the optimal game values of the zero-sum games with fuzzy payoff...
متن کاملSparse binary zero-sum games
Solving zero-sum matrix games is polynomial, because it boils down to linear programming. The approximate solving is sublinear by randomized algorithms on machines with random access memory. Algorithms working separately and independently on columns and rows have been proposed, with the same performance; these versions are compliant with matrix games with stochastic reward. (Flory and Teytaud, ...
متن کاملZero-sum games with charges
We consider two-player zero-sum games with countably infinite action spaces and bounded payoff functions. The players’ strategies are finitely additive probability measures, called charges. Since a strategy profile does not always induce a unique expected payoff, we distinguish two extreme attitudes of players. A player is viewed as pessimistic if he always evaluates the range of possible expec...
متن کاملDefinable Zero-Sum Stochastic Games
Definable zero-sum stochastic games involve a finite number of states and action sets, reward and transition functions that are definable in an o-minimal structure. Prominent examples of such games are finite, semi-algebraic or globally subanalytic stochastic games. We prove that the Shapley operator of any definable stochastic game with separable transition and reward functions is definable in...
متن کاملZero-Sum Games: Minimax Equilibria
Matching Pennies is a well-known example of a two player, zero-sum game. In this game, each of the players, the matcher and the mismatcher, flips a coin, and the payoffs are determined as follows. If the coins come up matching (i.e., both heads or both tails), then the matcher wins, so the mismatcher pays the matcher the sum of $1. If the coins do not match (i.e., one head and one tail), then t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications
سال: 2010
ISSN: 2188-4730,2188-4749
DOI: 10.5687/sss.2010.310