On Special Berwald Metrics

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Riemannian metrics having the same geodesics with Berwald metrics

In Theorem 1, we generalize the results of Szabó [Sz1, Sz2] for Berwald metrics that are not necessary strictly convex: we show that for every Berwald metric F there always exists a Riemannian metric affine equivalent to F . Further, we investigate geodesic equivalence of Berwald metrics. Theorem 2 gives a system of PDE that has a (nontrivial) solution if and only if the given essentially Berwa...

متن کامل

On Special Generalized Douglas-Weyl Metrics

In this paper, we study a special class of generalized Douglas-Weyl metrics whose Douglas curvature is constant along any Finslerian geodesic. We prove that for every Landsberg metric in this class of Finsler metrics, ? = 0 if and only if H = 0. Then we show that every Finsler metric of non-zero isotropic flag curvature in this class of metrics is a Riemannian if and only if ? = 0.

متن کامل

Riemannian metrics having common geodesics with Berwald metrics

In Theorem 1, we generalize some results of Szabó [Sz1, Sz2] for Berwald metrics that are not necessarily strictly convex: we show that for every Berwald metric F there always exists a Riemannian metric affine equivalent to F . As an application we show (Corollary 3) that every Berwald projectively flat metric is a Minkowski metric; this statement is a “Berwald” version of Hilbert’s 4th problem...

متن کامل

Berwald metrics constructed by Chevalley’s polynomials

Berwald metrics are particular Finsler metrics which still have linear Berwald connections. Their complete classification is established in an earlier work, [Sz1], of this author. The main tools in these classification are the Simons-Berger holonomy theorem and the Weyl-group theory. It turnes out that any Berwald metric is a perturbed-Cartesian product of Riemannian, Minkowski, and such non-Ri...

متن کامل

On conformal transformation of special curvature of Kropina metrics

      An important class of Finsler metric is named Kropina metrics which is defined by Riemannian metric α and 1-form β  which have many applications in physic, magnetic field and dynamic systems. In this paper, conformal transformations of χ-curvature and H-curvature of Kropina metrics are studied and the conditions that preserve this quantities are investigated. Also it is shown that in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry, Integrability and Geometry: Methods and Applications

سال: 2010

ISSN: 1815-0659

DOI: 10.3842/sigma.2010.008