On some inequalities for the incomplete gamma function
نویسندگان
چکیده
منابع مشابه
On some inequalities for the incomplete gamma function
Let p 6= 1 be a positive real number. We determine all real numbers α = α(p) and β = β(p) such that the inequalities [1− e−βx p ] < 1 Γ(1 + 1/p) ∫ x 0 e−t p dt < [1− e−αx p ] are valid for all x > 0. And, we determine all real numbers a and b such that − log(1− e−ax) ≤ ∫ ∞ x e−t t dt ≤ − log(1− e−bx)
متن کاملOn Some Inequalities for the Gamma Function
We present some elementary proofs of well-known inequalities for the gamma function and for the ratio of two gamma functions. The paper is purely expository and it is based on the talk that the first author gave during the memorial conference in Patras, 2012.
متن کاملSome inequalities for the gamma function
In this paper are established some inequalities involving the Euler gamma function. We use the ideas and methods that were used by J. Sándor in his paper [2].
متن کاملInequalities for the Gamma Function
We prove the following two theorems: (i) Let Mr(a, b) be the rth power mean of a and b. The inequality Mr(Γ(x), Γ(1/x)) ≥ 1 holds for all x ∈ (0,∞) if and only if r ≥ 1/C − π2/(6C2), where C denotes Euler’s constant. This refines results established by W. Gautschi (1974) and the author (1997). (ii) The inequalities xα(x−1)−C < Γ(x) < xβ(x−1)−C (∗) are valid for all x ∈ (0, 1) if and only if α ≤...
متن کاملextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1997
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-97-00814-4