On some geometric results for generalized <i>k</i>-Bessel functions
نویسندگان
چکیده
Abstract The main aim of this article is to present some novel geometric properties for three distinct normalizations the generalized k k -Bessel functions, such as radii uniform convexity and α \alpha -convexity. In addition, we show that -convexity remain in between starlikeness convexity, case when ∈ [ 0 , 1 stretchy="false">] \in {[}0,1], they are decreasing with respect parameter . . key tools proof our results infinite product representations normalized functions real zeros these functions.
منابع مشابه
Some Integrals Involving Bessel Functions Some Integrals Involving Bessel Functions
A number of new definite integrals involving Bessel functions are presented. These have been derived by finding new integral representations for the product of two Bessel functions of different order and argument in terms of the generalized hypergeometric function with subsequent reduction to special cases. Connection is made with Weber's second exponential integral and Laplace transforms of pr...
متن کاملGeneralized Bessel functions for p-radial functions
Suppose that d ∈ N and p > 0. In this paper, we study the generalized Bessel functions for the surface {v ∈ Rd : |v|p = 1}, introduced by D.St.P. Richards. We derive a recurrence relation for these functions and utilize a series representation to relate them to the classical symmetric functions. These generalized Bessel functions are symmetric with respect to the action of the hyperoctahedral g...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Jordan-type Inequalities for Generalized Bessel Functions
In this note our aim is to present some Jordan-type inequalities for generalized Bessel functions in order to extend some recent results concerning generalized and sharp versions of the well-known Jordan’s inequality. Acknowledgements: Research partially supported by the Institute of Mathematics, University of Debrecen, Hungary. The author is grateful to Prof. Lokenath Debnath for a copy of pap...
متن کاملInequalities Involving Generalized Bessel Functions
Let up denote the normalized, generalized Bessel function of order p which depends on two parameters b and c and let λp(x) = up(x), x ≥ 0. It is proven that under some conditions imposed on p, b, and c the Askey inequality holds true for the function λp , i.e., that λp(x) +λp(y) ≤ 1 +λp(z), where x, y ≥ 0 and z = x + y. The lower and upper bounds for the function λp are also established.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Demonstratio Mathematica
سال: 2023
ISSN: ['0420-1213', '2391-4661']
DOI: https://doi.org/10.1515/dema-2022-0235