On simultaneous calibration of two-sample t-tests for high-dimension low-sample-size data
نویسندگان
چکیده
منابع مشابه
Deep Neural Networks for High Dimension, Low Sample Size Data
Deep neural networks (DNN) have achieved breakthroughs in applications with large sample size. However, when facing high dimension, low sample size (HDLSS) data, such as the phenotype prediction problem using genetic data in bioinformatics, DNN suffers from overfitting and high-variance gradients. In this paper, we propose a DNN model tailored for the HDLSS data, named Deep Neural Pursuit (DNP)...
متن کاملGeometric representation of high dimension, low sample size data
High dimension, low sample size data are emerging in various areas of science. We find a common structure underlying many such data sets by using a non-standard type of asymptotics: the dimension tends to 1 while the sample size is fixed. Our analysis shows a tendency for the data to lie deterministically at the vertices of a regular simplex. Essentially all the randomness in the data appears o...
متن کاملAsymptotics for High Dimension, Low Sample Size data and Analysis of Data on Manifolds
SUNGKYU JUNG: Asymptotics for High Dimension, Low Sample Size data and Analysis of Data on Manifolds. (Under the direction of Dr. J. S. Marron.) The dissertation consists of two research topics regarding modern non-standard data analytic situations. In particular, data under the High Dimension, Low Sample Size (HDLSS) situation and data lying on manifolds are analyzed. These situations are rela...
متن کاملComparing two Formulas of Sample Size Determination for Prevalence Studies
Background and purpose: Sample size and its determination is one of the most important problems in health researches. Calculating sample size for prevalence studies is one of the common questions of sample size topics. Minimum sample size with least complexity is desirable in order to achieve the basic goal of these studies. This study aims to compare two formulas of sample size calculation for...
متن کاملPca Consistency in High Dimension , Low Sample Size Context
Principal Component Analysis (PCA) is an important tool of dimension reduction especially when the dimension (or the number of variables) is very high. Asymptotic studies where the sample size is fixed, and the dimension grows (i.e. High Dimension, Low Sample Size (HDLSS)) are becoming increasingly relevant. We investigate the asymptotic behavior of the Principal Component (PC) directions. HDLS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistica Sinica
سال: 2021
ISSN: 1017-0405
DOI: 10.5705/ss.202018.0467