On simple Shamsuddin derivations in two variables

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On simple Shamsuddin derivations in two variables.

We study the subgroup of k -automorphisms of k ⁢ [ x , y ] which commute with a simple derivation d of k ⁢ [ x , y ] . We prove, for instance, that this subgroup is trivial when d is a shamsuddin simple derivation. in the general case of simple derivations, we obtain properties for the elements of this subgroup.

متن کامل

Nonholonomic Simple D-modules from Simple Derivations

We give new examples of affine sufaces whose rings of coordinates are d-simple and use these examples to construct simple nonholonomic Dmodules over these surfaces.

متن کامل

On Two Forms of Bureaucracy in Derivations

We call irrelevant information in derivations bureaucracy. An example of such irrelevant information is the order between two consecutive inference rules that trivially permute. Building on ideas by Guglielmi, we identify two forms of bureaucracy that occur in the calculus of structures (and, in fact, in every non-trivial term rewriting derivation). We develop term calculi that provide derivati...

متن کامل

A Note on Simple Programs with Two Variables

It is well known that programs using only the following constructs: {x+x+ 1, X+-.X I 1, if x =0 then goto I, goto 1, halt} compute all partial recursive functions [7]. In fact, Minsky showed that simple programs with three variables compute all partial recursive functions with one argument and, consequently, simple programs with three variables recognize all recursively enumerable sets. We ask ...

متن کامل

Images of locally finite derivations of polynomial algebras in two variables

In this paper we show that the image of any locally finite k-derivation of the polynomial algebra k[x, y] in two variables over a field k of characteristic zero is a Mathieu subspace. We also show that the two-dimensional Jacobian conjecture is equivalent to the statement that the image ImD of every k-derivation D of k[x, y] such that 1 ∈ ImD and divD = 0 is a Mathieu subspace of k[x, y].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Anais da Academia Brasileira de Ciências

سال: 2016

ISSN: 0001-3765

DOI: 10.1590/0001-3765201620140718