On - (sigma, tau ) - Lie Ideals Of - Prime Rings With Derivation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation

‎Let $R$ be a $*$-prime ring with center‎ ‎$Z(R)$‎, ‎$d$ a non-zero $(sigma,tau)$-derivation of $R$ with associated‎ ‎automorphisms $sigma$ and $tau$ of $R$‎, ‎such that $sigma$‎, ‎$tau$‎ ‎and $d$ commute with $'*'$‎. ‎Suppose that $U$ is an ideal of $R$ such that $U^*=U$‎, ‎and $C_{sigma,tau}={cin‎ ‎R~|~csigma(x)=tau(x)c~mbox{for~all}~xin R}.$ In the present paper‎, ‎it is shown that if charac...

متن کامل

some commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation

‎let $r$ be a $*$-prime ring with center‎ ‎$z(r)$‎, ‎$d$ a non-zero $(sigma,tau)$-derivation of $r$ with associated‎ ‎automorphisms $sigma$ and $tau$ of $r$‎, ‎such that $sigma$‎, ‎$tau$‎ ‎and $d$ commute with $'*'$‎. ‎suppose that $u$ is an ideal of $r$ such that $u^*=u$‎, ‎and $c_{sigma,tau}={cin‎ ‎r~|~csigma(x)=tau(x)c~mbox{for~all}~xin r}.$ in the present paper‎, ‎it is shown that...

متن کامل

Notes on Generalized Derivations on Lie Ideals in Prime Rings

Let R be a prime ring, H a generalized derivation of R and L a noncommutative Lie ideal of R. Suppose that usH(u)ut = 0 for all u ∈ L, where s ≥ 0, t ≥ 0 are fixed integers. Then H(x) = 0 for all x ∈ R unless char R = 2 and R satisfies S4, the standard identity in four variables. Let R be an associative ring with center Z(R). For x, y ∈ R, the commutator xy− yx will be denoted by [x, y]. An add...

متن کامل

Lie Ideals in Prime Γ-rings with Derivations

Let M be a 2 and 3-torsion free prime Γ-ring, d a nonzero derivation on M and U a nonzero Lie ideal of M . In this paper it is proved that U is a central Lie ideal of M if d satisfies one of the following (i) d(U) ⊂ Z, (ii) d(U) ⊂ U and d(U) = 0, (iii) d(U) ⊂ U , d(U) ⊂ Z.

متن کامل

Lie ternary $(sigma,tau,xi)$--derivations on Banach ternary algebras

Let $A$ be a Banach ternary algebra over a scalar field $Bbb R$ or $Bbb C$ and $X$ be a ternary Banach $A$--module. Let $sigma,tau$ and $xi$ be linear mappings on $A$, a linear mapping $D:(A,[~]_A)to (X,[~]_X)$ is called a Lie ternary $(sigma,tau,xi)$--derivation, if $$D([a,b,c])=[[D(a)bc]_X]_{(sigma,tau,xi)}-[[D(c)ba]_X]_{(sigma,tau,xi)}$$ for all $a,b,cin A$, where $[abc]_{(sigma,tau,xi)}=ata...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hacettepe Journal of Mathematics and Statistics

سال: 2017

ISSN: 1303-5010

DOI: 10.15672/hjms.2017.501