On self-adjointness of symmetric diffusion operators
نویسندگان
چکیده
منابع مشابه
On the Essential Self-Adjointness of Anti-Commutative Operators
In this article, linear operators satisfying anti-commutation relations are considered. It is proven that an anti-commutative type of the Glimm-Jaffe-Nelson commutator theorem follows.
متن کاملJ -self-adjointness of a Class of Dirac-type Operators
In this note we prove that the maximally defined operator associated with the Dirac-type differential expression M(Q) = i ( d dx Im −Q −Q − d dx Im ) , where Q represents a symmetric m × m matrix (i.e., Q(x) = Q(x) a.e.) with entries in L loc (R), is J -self-adjoint, where J is the antilinear conjugation defined by J = σ1C, σ1 = ( 0 Im Im 0 ) and C(a1, . . . , am, b1, . . . , bm) = (a1, . . . ,...
متن کاملSelf-adjointness of Dirac Operators via Hardy-dirac Inequalities
Distinguished selfadjoint extension of Dirac operators are constructed for a class of potentials including Coulombic ones up to the critical case, −|x|. The method uses Hardy-Dirac inequalities and quadratic form techniques.
متن کاملElliptic Regularity and Essential Self-adjointness of Dirichlet Operators on I R
We prove a new regularity result for operators of type L = +Br+c,
متن کاملOn Povzner–wienholtz-type Self-adjointness Results for Matrix-valued Sturm–liouville Operators
We derive Povzner–Wienholtz-type self-adjointness results form× m matrix-valued Sturm–Liouville operators T = R [
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Evolution Equations
سال: 2020
ISSN: 1424-3199,1424-3202
DOI: 10.1007/s00028-020-00572-3