On second order partial differential equations of elliptic type

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the stability of linear differential equations of second order

The aim of this paper is to investigate the Hyers-Ulam stability of the  linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$  $fin C[a,b]$ and $-infty

متن کامل

Some Remarks on Some Second-order Elliptic Differential Equations

We are concerned with the almost automorphic solutions to the second-order elliptic differential equations of type ü(s) + 2Bu̇(s) + Au(s) = f(s) (∗), where A, B are densely defined closed linear operators acting in a Hilbert space H and f : R 7→ H is a vector-valued almost automorphic function. Using invariant subspaces, it will be shown that under appropriate assumptions; every solution to (∗) ...

متن کامل

On Second Order Elliptic and Parabolic Equations of Mixed Type

It is known that solutions to second order uniformly elliptic and parabolic equations, either in divergence or nondivergence (general) form, are Hölder continuous and satisfy the interior Harnack inequality. We show that even in the one-dimensional case (x ∈ R1), these properties are not preserved for equations of mixed divergence-nondivergence structure: for elliptic equations Di(a 1 ijDju) + ...

متن کامل

Div First-Order System LL* (FOSLL*) for Second-Order Elliptic Partial Differential Equations

The first-order system LL* (FOSLL*) approach for general second-order elliptic partial differential equations was proposed and analyzed in [Z. Cai et al., SIAM J. Numer. Anal., 39 (2001), pp. 1418–1445], in order to retain the full efficiency of the L2 norm first-order system leastsquares (FOSLS) approach while exhibiting the generality of the inverse-norm FOSLS approach. The FOSLL* approach of...

متن کامل

On Approximate Solutions of Second-Order Linear Partial Differential Equations

In this paper, a Chebyshev polynomial approximation for the solution of second-order partial differential equations with two variables and variable coefficients is given. Also, Chebyshev matrix is introduced. This method is based on taking the truncated Chebyshev expansions of the functions in the partial differential equations. Hence, the result matrix equation can be solved and approximate va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Czechoslovak Mathematical Journal

سال: 1964

ISSN: 0011-4642,1572-9141

DOI: 10.21136/cmj.1964.100606